Antimicrobial Resistance in Nontyphoidal Salmonella Isolates From Human and Swine Sources in Brazil: A Systematic Review of the Past Three Decades

AUTHORS

Grazielle Lima RodriguesPedro PanzenhagenRafaela Gomes FerrariVania Margaret Flosi PaschoalinCarlos Adam Conte-Junior

ABSTRACT

Salmonella are the leading cause of foodborne illnesses worldwide. The widespread use of antimicrobials as prophylactic, therapeutic, and growth promoters in both livestock and human medicine has resulted in selective pressure regarding antimicrobial-resistant (AMR) bacteria. This systematic review summarizes phenotypic antimicrobial resistance profiles in Salmonella isolates from human and swine sources between 1990 and 2018 in Brazil. The 20 studies that matched the eligibility criteria-isolates from pigs and humans from Brazil, between 1990 and 2016, containing information on the number of Salmonella isolates, and applying the disk diffusion susceptibility method-were included. During the assessed period, Salmonella strains isolated from swine sources displayed the highest resistance rates for tetracycline (20.3%) and sulfonamides (17.4%). In contrast, human isolates displayed the highest resistance rates against ampicillin (19.8%) and tetracycline (17%). Salmonella Typhimurium was the most frequent AMR isolate from both swine and human sources, corresponding to 67% of all isolates. From 2001 to 2005, tetracycline and ampicillin were the top antimicrobial resistance compounds, and the most frequently detected in swine and human sources, respectively. A total of 63 and 58 multiple drug resistance profiles were identified in swine and human isolates, respectively. Antimicrobial resistance has decreased throughout the 1990-2016 period, except for gentamicin and nalidixic acid in swine and human isolates, respectively. The results indicate that Salmonella isolated from human and swine display resistance against clinically important antimicrobials, indicating that swine are possibly one of the main vectors for spreading human salmonellosis in Brazil.

Click here to read the article, published in Microbial Drug Resistance.