In Vitro Evaluation of Anti-biofilm Agents Against Salmonella enterica

AUTHORS

Jenna SandalaJohn S Gunn 

ABSTRACT

Salmonella enterica is able to establish robust adherent communities called biofilms that allow for long-term colonization of both biotic and abiotic surfaces. These biofilm communities pose a significant challenge to successful eradication of the bacteria from contaminated surfaces and the infected host, as entry into the biofilm phenotype confers the bacterial population with tolerance to a variety of environmental and therapeutic insults to which it would otherwise be susceptible. The identification of antimicrobial strategies that specifically target the Salmonella biofilm state is therefore of great importance in order to both prevent and treat biofilm-mediated disease. Here, we provide detailed methods for the in vitro cultivation of Salmonella biofilms that can easily be scaled up for use in high-throughput screening of candidate anti-biofilm agents. These assays may also be utilized to further characterize the inhibitory and/or disruptive capabilities of lead anti-biofilm agents, as well as to identify combination treatments that demonstrate enhanced anti-biofilm effects. Furthermore, the assays may be slightly modified (e.g., optimal growth conditions) to evaluate other bacterial genera.

Click here to read the article, published in Methods in Molecular Biology.