Dual recognition strategy and magnetic enrichment based lateral flow assay toward Salmonella enteritidis detection

AUTHORS

Tong Bu,  Xiaolin Yao, Lunjie Huang, Leina Dou, Bingxin Zhao, Baowei Yang, Tao Li, Jianlong Wang, Daohong Zhang

ABSTRACT

As a rapid and facile means for foodborne bacteria detection in situ, lateral flow immunoassay (LFA) still has intrinsic limitations in the construction of the existing sandwich LFA format, e.g. screening difficulties of paired antibodies (Abs), poor stability of Ab probe, etc. Here, combined the strong affinity of antibiotic with the superior specificity of antibody molecules, a novel and robust LFA based on a dual recognition strategy and magnetic separation was designed to achieve specific and sensitive determination of Salmonella enteritidis (S. enteritidis). In this work, ampicillin (Amp), a broad-spectrum antibiotic against bacteria, was employed as an ideal Ab replacer to anchor cells of target bacteria. By coating Amp on magnetite nanoparticles (MNPs), the Amp-MNPs showed remarkable binding, separation and enrichment capacities toward bacteria even under complex sample matrices. To ensure the selectivity of this protocol, anti-S. enteritidis monoclonal antibody was then adopted as the second anchoring agent to form a sandwich complex with Amp-MNPs. Based on these facts, S. enteritidis, as low as 102–103 CFU/mL, could be detected by naked eyes in food samples. Therefore, this creative antibiotic-bacteria-antibody LFA sandwich pattern shows great application potential in the monitoring of food contamination and infectious diseases caused by pathogenic bacteria. Compared to the common paired Abs based sandwich method, the proposed approach was cost-effective, non-labor intensive, stable, sensitive and efficient.

Click here to read the article, published in ScienceDirect.