Molecular Surveillance of Non-Typhoidal *Salmonella* from Environmental Sources in Disease Endemic Informal Settlement in Nairobi, Kenya

<u>Collins K. Kebenei,</u> Michael Muraya, Kelvin K. Kering, Georgina Odityo, Cecilia Mbae, David Onyango, Sam Kariuki

Centre for Microbiology Research, KEMRI

Introduction

In HIC, NTS causes self-limiting gastroenteritis.

- In LMICs, associated with severe bacteremia.
- Over 94M cases of infections, and 155,000 fatalities (*Stanaway et al., 2019; WHO, 2018*).

NTS disease incidence rates/100,000, by country, in 2017

Source: GBD 2017 Non-Typhoidal Salmonella Invasive Disease Collaborators

Gaps in our knowledge on environmental contamination

our understanding of the potential role of the environment as a reservoir for community transmission of NTS in disease-endemic settings is limited.

Study Objectives

- ✓ To screen for NTS in various environmental samples (drinking water, effluent, soil, and raw sewers).
- To assess fecal contamination of the environmental samples (drinking water, effluent, soil, and raw sewers).
- ✓ To investigate the seasonal variations in detection of NTS in disease-endemic settings.

Mukuru Informal settlements

- Mukuru an area 5km² with over 300,000
- Poor sanitation and inadequate access to clean drinking water, creates a significant hotspot for the fast spread of NTS in slums.

Methodology

Case-Contact HH

SamplesSample IDSoil038495_SEffluent (Open sewer)038495_EDrinking water038495_D

100M

 ✓ Raw sewer (from convergence point)

Soil Sampling

Control HH

Samples	Sample ID		
Soil	038495_T_S		
Effluent (Open sewer)	038495_T_E		
Drinking water	038495_T_D		

Sample Processing

Results: Detection of Fecal contamination

		Fecal contamination detection				
Study area	Sample Type	Jan-Mar	Apr-Jun	Jul-Sep	Oct-Dec	Total
Mukuru	Drinking Water	16/30 (53.3%)	16/20 (80.0%)	14/22 (63.6%)	9/14 (64.3%)	55/86 (63.9%)
	Effluent	20/22 (90.9%)	29/30 (96.7%)	20/20 (100%)	14/14 (100%)	83/86 (96.5%)
	Soil	17/22 (77.3%)	28/30 (93.3%)	20/20 (100%)	11/14 (78.6%)	79/86 (91.7%)
	Raw Sewer	4/4 (100%)	4/4 (100%)	4/4 (100%)	4/4 (100%)	16/16 (100%)

- An indicator of *fecal* contamination
- High fecal contamination especially in drinking water
- May indicate likelihood of environmental contamination by NTS and other coliforms

Detection of NTS

Study area	Sample Type	No: of Samples collected	Non-Typhoidal <i>Salmonella</i> (NTS) Distribution per Sample Type		
			Salmonella Typhimurium	<i>Salmonella</i> Enteritidis	Total NTS Positive
Mukuru Informal Settlement	Drinking Water	86 (31.4%)	3 (3.5%)	12 (14%)	15
	Effluent	86 (31.4%)	10 <i>(11.6%)</i>	21 (24.4%)	31
	Soil	86 (31.4%)	4 (4.7%)	9 (10.5%)	13
	Raw Sewer	16 (5.8%)	11 (68.8%)	12 (75.0%)	23
Total		n=274	28 (10.2%)	54 (19.7%)	82 (29.9%)

- 29.9% detection rate of NTS from the environmental samples.
- *S.* Enteritidis was the most ubiquitous compared to *S.* Typhimurium .
- To Note : 4 NTS were isolated by culture:
 - ✓ S. En & STm from drinking water of cases
 - ✓ S. En from effluent & sewer
- This as an indicator of potential NTS dissemination from environment

Proportions of serotypes from environmental sources

Discussion: Environmental contamination

- The relatively high levels of NTS contamination in raw sewers and household effluent may be due to fecal contamination.
- This demonstrates that fecal contamination may be the primary cause of environmental NTS contamination
- NTS contamination in drinking water and soil is of concern due to their potential to facilitate uncontrolled NTS spread in the community;
 - ✓ more so to children due to their indiscriminate outdoor activities that may expose them to contaminated water, open drains, and soil.

Seasonal Variation in Non-Typhoidal *Salmonella* in environmental Carriage

- Both S. Typhimurium and S. Enteritidis displayed decrease in detection in 1st & 3rd quarter of the year,
- Increase in detection was observed in the 2nd & 4th quarter, *coinciding with wet seasons*

Normalized data. Variables represented in relation to their respective baseline values. Positive values indicate an increase in NTS detection. Precipitation included for reference.

Conclusion and recommendation

- Establishing a comprehensive NTS surveillance (including WGS & metagenomic approach) key in:
 - ✓ Monitoring NTS genotypes and distribution at the interface between the humans and environment:
 - a. to gain insights into the dynamics of NTS transmission,
 - b. to develop effective prevention and control strategies to mitigate its spread within the community.

Acknowledgement

In Search of Better Health

ROBERT KOCH INSTITUT

Funding by

