

THE AGA KHAN UNIVERSITY

Efficacy of typhoid vaccines against culture confirmed *Salmonella* Typhi in typhoid endemic countries : A systematic review and meta-analysis

Rabab Batool

Senior Instructor - Aga Khan University Hospital PhD Candidate – Tampere University Open Access Article

Strategies to Improve Coverage of Typhoid Conjugate Vaccine (TCV) Immunization Campaign in Karachi, Pakistan

by 🙁 Farah Naz Qamar ^{1,*} 🖂 🙁 Rabab Batool ¹ 🖂 😮 Sonia Qureshi ¹ 🖂 🔍 Miqdad Ali ¹ 🖂 횑 Tahira Sadaf 1 🖂 😫 Junaid Mehmood 1 🖂 😫 Khalid Igbal 2 🖂 😫 Akram Sultan 3 🖂 😫 Noah Duff 4 🖂 and 😫 Mohammad Tahir Yousafzai 1 🖂

- ² Kharadar General Hospital, Agha Khan Road, Nawab Mahabat Khanji Rd, Kharadar Karachi, Sindh 74000, Pakistan
- ³ E.P.I Sindh, Ex I.I Depot Rafiqui Shaheedi Road, Karachi Cantonment, Karachi, Sindh 75510, Pakistan
- ⁴ Sabin Vaccine Institute, 2175 K Street, NW, Suite 400, Washington, DC 20037, USA

Vaccine Volume 39, Issue 40, 24 September 2021, Pages 5858-5865

Effectiveness of typhoid conjugate vaccine against culture-confirmed typhoid in a periurban setting in Karachi: A case-control study

Rabab Batool^{a b} 🖾 , Mohammad Tahir Yousafzai^{a c} 🖾 , Sonia Qureshi^a 🖾 , Miqdad Ali^a 🖾 , Tahira Sadaf a 🖂 , Junaid Mehmood a 🖂 , Per Ashorn ^{b d} 🖂 , Farah Naz Qamar a 义 🖂

Article Category: Short Report

Risk Factors Associated with Extensively Drug-Resistant Typhoid in an Outbreak Setting of Lyari Town Karachi, Pakistan

Rabab Batool, Sonia Qureshi, Mohammad Tahir Yousafzai, Momin Kazi, Migdad Ali, and Farah Naz Qamar

View Less -

DOI: https://doi.org/10.4269/ajtmh.21-1323

Page(s): 1379-1383

Volume/Issue: Volume 106: Issue 5

journal homepage: www.elsevier.com/locate/vaccine

Parental acceptance of typhoid conjugate vaccine for children aged 6 months to 15 years in an outbreak setting of Lyari Town Karachi, Pakistan

Rabab Batool^{a,b}, Mohammad Tahir Yousafzai^{a,c}, Sonia Qureshi^a, Sajid Muhammad^a, Ibtisam Qazi^a, Tahira Sadaf^a, Per Ashorn^b, Farah Naz Qamar^a,

^a Department of Pediatrics and Child Health, Aga Khan University Hospital, Stadium Rd, PO Box 3500 Karachi 74800, Pakistan ^b Centre for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520 Finland

^c The Kirby Institute, UNSW Sydney, Wallace Wurth Building High Street, UNSW Sydney, Kensington, NSW 2052, Australia

PLOS ONE

🔓 OPEN ACCESS 🦻 PEER-REVIEWED

RESEARCH ARTICLE

Coverage survey of typhoid conjugate vaccine among children aged 6 months to 15 years in an urban slum settlement of Lyari Town Karachi, Pakistan

Rabab Batool, Sonia Qureshi, Zoya Hag, Mohammad Tahir Yousafzai, Rehana A. Salam, Rafey Ali, Tahira Sadaf, Migdad Ali, Farah Naz Qamar 🗖

Published: August 7, 2023 • https://doi.org/10.1371/journal.pone.0289582

Am J Trop Med Hyg. 2020 Apr; 102(4): 705-706. doi: 10.4269/ajtmh.19-0839

Story of Lyari Rabab Batool

nda ത ത 5 December

Outline

- Background
- Objectives
- Methods
 - PICOS Framework
 - PRISMA
 - Data Collection
 - RoB
 - Statistical Analysis
- Results
- Conclusion

THE AGA KHAN UNIVERSITY

Background

DAWN TODAY'S PAPER | NOVEMBER 05, 2019

A virulent strain

The Telegraph

♠ > News > Global Health Security > Science & Disease

Typhoid superbug spreads throughout Pakistan

Drug-resistant superbug to blame for deadly typhoid outbreak in Pakistan

Researchers warn of limited treatment options as mutated strain of typhoid is blamed for surge in cases

US issues travel alert for Pakistan over typhoid superbug outbreak

Background

- Strategic Typhoid Alliance Across Africa and Asia (STRATAA) study reported azithromycin resistance of 21% in Bangladesh and 2.8% in Nepal.^{1,2}
- Efficacious and safe typhoid vaccines have existed since the early 1990s but were not introduced into routine immunization.

^{1.} Hooda Y, Sajib MS, Rahman H, Luby SP, Bondy-Denomy J, Santosham M, Andrews JR, Saha SK, Saha S. Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS neglected tropical diseases. 2019 Nov 15;13(11):e0007868.

Saha S, Sajib MS, Garrett D, Qamar FN. Antimicrobial resistance in typhoidal Salmonella: around the world in 3 days. Clinical Infectious Diseases. 2020 Jul 29;71(Supplement_2):S91-5.

Characteristics of the 2 Typhoid Vaccines Recommended by the World Health Organization: Ty21a and Vi Polysaccharide

THE AGA KHAN UNIVERSITY

	Ty21a Vaccine	Vi Capsular Polysaccharide Vaccine		
Vaccine type	Live attenuated	Subunit		
Composition	Chemically mutated Ty2 strain of S. typhi	Purified Vi capsular polysaccharide of Ty2 S. typhi strain		
Immunogenic properties	 Elicits mucosal IgA and serum IgG antibodies against O, H, and other antigens, as well as cell- mediated responses No booster effect has been shown 	 Elicits serum IgG Vi antibodies T-cell independent (no booster response) 		
Route of administration	Oral	Parenteral (subcutaneous or intramuscular)		
Minimum age vaccine is licensed for use	2 years old for liquid formulation and 5 years old for capsule formulation	2 years old		
Formulation	 Enteric-coated capsules, or Liquid suspension (lyophilized vaccine + buffer mixed with water upon use) 	Solution of 25 μ g combined with buffer		
Number of doses required for complete vaccine regimen	3 to 4	1		
Storage requirements	Requires storage at 2° to 8°C	Requires storage at 2° to 8°C		
Shelf life in higher temperature	14 days at 25 °C	6 months at 37 °C 2 years at 22 °C		
Safety/tolerability	High	High		
Efficacy at 3 years (95% CI)	51% (36-62%)	55% (30-70%)		
Length of protection	At least 5–7 years	At least 3 years		

Syed KA, Saluja T, Cho H, Hsiao A, Shaikh H, Wartel TA, Mogasale V, Lynch J, Kim JH, Excler JL, Sahastrabuddhe S. Review on the recent advances on typhoid vaccine development and challenges ahead. Clinical Infectious Diseases. 2020 Jul 29;71(Supplement_2):S141-50.

Home / News / Typhoid vaccine prequalified

Health Topics ~

Typhoid vaccine prequalified Home News New typhoid vaccine offers hope of protection for children New typhoid vaccine offers hope of protection for children PUBLISHED 29 SEP 2017 RESEARCH HEALTH SCIENCE SHARE THIS A new typhoid vaccine for both adults and children has been proven by Oxford 2 researchers to be safe and effective in preventing the disease. The NEW ENGLAND SUBSCRIBE \rightarrow JOURNAL of MEDICINE **OR RENEW** IMAGE CHALLENGE ORIGINAL ARTICLE ORIGINAL ARTICLE EDITORIAL **NEJM GROUP PODCASTS** What is the diagnosis? Prehospital Tranexamic Acid for Base-Edited CAR7 T Cells for Antagonizing the Leptin Relapsed T-Cell Acute Receptor in Obesity Severe Trauma DISCOVER NOW Lymphoblastic Leukemia

Newsroom v

Emergencies ~

Data v

About WHO ~

Perspective Extensively Drug-Resistant

Extensively Drug-Resistant Typhoid — Are Conjugate Vaccines Arriving Just in Time?

Jason R. Andrews, M.D., Farah N. Qamar, F.C.P.S., Richelle C. Charles, M.D., and Edward T. Ryan, M.D.

Countries ~

Incidence per 100 000

<10 (low)
 10-100 (medium)
 >100-<500 (high)
 >500 (very high)

TCV introduction status

- Exploratory phase
- Decision-making phase
- Approved by Gavi, or application under review
- Vaccine introduced*

*Malawi introduction planned to occur during publication of this paper

Objectives

• To synthesize evidence on the efficacy and safety of typhoid vaccines against culture-confirmed *S*. Typhi.

Methods

Literature search

- January 1986, and January 2023
- Cochrane (CENTRAL), MEDLINE, and Embase

Search updated on November 2nd, 2023.

PROSPERO protocol ID: CRD42021241043

Description of the PICOS strategy

Population	All age groups
Intervention	All typhoid vaccines: The Live Attenuated Ty21a, Vi capsular polysaccharide, Vi-tetanus
	toxoid conjugate vaccine, Vi polysaccharide conjugated to recombinant Pseudomonas
	aeruginosa exotoxin A vaccine (Vi-rEPA)
Comparison	Control: Placebo, Typhoid-inactive agents, Vaccines other than Typhoid
Outcome	Vaccine efficacy: calculated as (1 – IRR)×100%
	Adverse events: within 7 days following vaccination.
Study Type	Included:
	Randomized control trials (RCTs) (individually, cluster and quasi-randomized trials)
	Excluded:
	- Observational studies
	- Modeling studies, human challenge studies, studies with sample size <30
	- Studies in languages other than English
	- Trials that aimed to assess only the immunogenicity of vaccine, or side effects
	- Studies older than 1986
	11

The PRISMA flow diagram

13

Data collection

- Covidence Systematic Review Software >> screening
- Data were extracted on:
 - Type of vaccine, number of shots or doses, follow-up duration, nature of vaccine formulation
 - Mode of administration (oral, IM)
 - Type of surveillance method for vaccine efficacy
 - Age of trial participants
 - Outcomes reported (vaccine efficacy and adverse events).

EndNote

Data collection

- For cluster-RCTs, effective sample sizes was calculated.
- The estimates from the individually randomized and cluster adjusted RCTs were pooled using GIV method.
- Methodological quality of articles was assessed using RoB 2.0.
- Quality of evidence for outcomes of interest was summarized as per (GRADE) criteria.

Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies

Risk of bias summary for each risk of bias item for each included study

Statistical analysis

Meta-analysis

- RevMan software (5.4.1).
- Random effects model
 - data were heterogeneous.
- Statistical heterogeneity
 - τ^2 , I², and the significance of the χ^2 test.
- Publication bias
 - funnel plots by assessing asymmetry.
- Subgroup analysis
 - Age groups

Results

				Risk Ratio	Risk	Ratio
Study or S] SE	Weight	IV, Random, 95% C	I IV, Rando	om, 95% Cl
26.9.5 Cun	nulative efficacy at 1-3 years					
Black 1990	(1) -0.2797	0.139	6.6%	0.76 [0.58, 0.99]	-•	-
Black 1990	(2) -0.7652	0.1618	6.0%	0.47 [0.34, 0.64]		
Levine 198	7 (3) -0.222	0.1832	5.5%	0.80 [0.56, 1.15]		+
Levine 198	7 (4) -1.1106	0.246	4.2%	0.33 [0.20, 0.53]		
Levine 198	7 (5) -0.679	0.213	4.9%	0.51 [0.33, 0.77]	_	
Levine 198	7 (6) -0.3887	0.1944	5.3%	0.68 [0.46, 0.99]		-
Levine 199	0 (7) -1.4354	0.4094	2.2%	0.24 [0.11, 0.53]		
Levine 199	0 (8) -0.378	0.3317	2.9%	0.69 [0.36, 1.31]		+
Simanjunta	k 1991 (9) -0.7949	0.1731	5.7%	0.45 [0.32, 0.63]		
Simanjunta	k 1991 (10) -0.5129	0.1603	6.0%	0.60 [0.44, 0.82]		
Subtotal (95% CI)		49.3%	0.55 [0.45, 0.67]	•	
Heterogene	eity: Tau² = 0.05; Chi² = 21.98,	df = 9 (P	= 0.009); I	² = 59%		
Test for ove	erall effect: Z = 6.05 (P < 0.000	01)				
26.9.8 Cun	nulative efficacy at 1-5 years					
Black 1990	• •	6 0.1148	7.2%	0.84 [0.67, 1.06]	-	r ł
Black 1990		5 0.1287	6.8%	0.57 [0.44, 0.74]		
Levine 198			4.9%	0.51 [0.33, 0.77]	-	
Levine 198			5.5%	0.80 [0.56, 1.15]		+
Levine 198		0.1944	5.3%	0.68 [0.46, 0.99]		-
Levine 198	. ,		4.2%	0.33 [0.20, 0.53]		
Levine 199		0.3317	2.9%	0.69 [0.36, 1.31]		+
Levine 199		0.4094	2.2%	0.24 [0.11, 0.53]		
		0.1603	6.0%	0.60 [0.44, 0.82]		
-		0.1731	5.7%	0.45 [0.32, 0.63]	-	
Subtotal (50.7%	0.57 [0.47, 0.70]	•	
Heterogene	eity: Tau² = 0.06; Chi² = 26.19,	df = 9 (P	= 0.002):	² = 66%		
-	erall effect: $Z = 5.46$ (P < 0.000	•	/, -			
Total (95%	CI)		100.0%	0.56 [0.49, 0.64]	•	
	eity: Tau² = 0.05; Chi² = 48.94,	df - 10 /5			• •	+ +
-	erall effect: Z = 8.30 (P < 0.000	•	- 0.0002	,, i = 0170	0.01 0.1	1 10 10
	i i	,		2 - 00/	Favours Ty21a	Favours placebo
rest for Su	ogroup differences: Chi ² = 0.08	, ui = 1 (F	= 0.78), l	U%		

та

Summary of findings: Ty21a versus control for preventing Typhoid fever

	Anticipated abso		Relative	Number of	Certainty of the
	Risk withRisk with		effect	participants	evidence
Outcomes	control	vaccine	(95% CI)	(studies)	(GRADE)
	Ty21a versus place	ebo for blood cult	ure confirmed	S. Typhi	
Incidence of Typhoid	54 per 10,000	32 per 10,000	RR 0.59	129757	$\oplus \oplus \oplus \oplus$
fever at 1 year	54 per 10,000	(25 to 41)	(0.46 to 0.76)	(3 RCTs)	High
Incidence of Typhoid	99 per 10,000	50 per 10,000	RR 0.50	129757	$\oplus \oplus \oplus \bigcirc$
fever at 2 years	99 per 10,000	(39 to 65)	(0.39 to 0.65)	(3 RCTs)	Moderate ^a
Incidence of Typhoid	116 mar 10,000	64 per 10,000	RR 0.55	247649	$\oplus \oplus \oplus \bigcirc$
fever at 1 to 3 years	116 per 10,000	(52 to 78)	(0.45 to 0.67)	(4 RCTs)	Moderate ^b
Incidence of Typhoid	108 per 10,000	71 per 10,000	RR 0.66	82544	$\oplus \oplus \bigcirc \bigcirc$
fever at 4 years	108 per 10,000	(47 to 108)	(0.44 to 1.00)	(1 RCT)	Low ^{c,d}
Incidence of Typhoid	120 m an 10 000	84 per 10,000	RR 0.70	82544	$\oplus \oplus \bigcirc \bigcirc$
fever at 5 years	120 per 10,000	(58 to 123)	(0.48 to 1.02)	(1 RCT)	Low ^{e,f}
Cumulative incidence of	•	74 per 10,000	RR 0.57	247649	$\oplus \oplus \oplus \bigcirc$
Typhoid fever at 1 to 5	130 per 10,000	(61 to 91)	(0.47 to 0.70)	(4 RCTs)	Moderate ^g
years				(11010)	200

				Control		Risk Ratio	Risk Ratio
Study or Subgroup	log[Risk Ratio]	SE	Total	Total	Weight	IV, Random, 95% C	IV, Random, 95% CI
28.6.2 Efficacy at 1 y					4.004		
Acharya 1987	-1.2705		3457		4.3%	0.28 [0.13, 0.59]	
Klugman 1987	-0.9383	0.3927	5692 9149		4.0%	0.39 [0.18, 0.84]	
Subtotal (95% CI)	0.00.01.3.0.07				8.3%	0.33 [0.19, 0.56]	
Heterogeneity: Tau ² = Test for overall effect:		· ·	= 0.54);	12 = 0%			
28.6.3 Efficacy at 2 y	ears						
Khan 2012	-0.4344	0.2315	13228	13993	10.6%	0.65 [0.41, 1.02]	
Klugman 1987	-0.8267	0.261	5692		8.6%	0.44 [0.26, 0.73]	
Sur 2009	-1.0414	0.1993	18869	18804	13.7%	0.35 [0.24, 0.52]	
Yang 2001	-1.179	0.4316	65287		3.3%	0.31 [0.13, 0.72]	
Subtotal (95% CI)			103076	104473	36.3%	0.44 [0.32, 0.60]	◆
Klugman 1987 Subtotal (95% CI) Heterogeneity: Not ap	•		5692 5692		11.7% 11.7%	0.45 [0.30, 0.70] 0.45 [0.30, 0.70]	•
Test for overall effect:	·						
28.6.5 Cumulative ef							
Acharya 1987	-1.2705		3457		4.3%	0.28 [0.13, 0.59]	
Khan 2012	-0.4344		13228		10.6%	0.65 [0.41, 1.02]	
Klugman 1987	-0.7885		5692		11.7%	0.45 [0.30, 0.70]	
	-1.0414		18869 65287		13.7%	0.35 [0.24, 0.52]	
Sur 2009	4 4 7 0		h528/	65984	3.3%	0.31 [0.13, 0.72]	
Yang 2001	-1.179	0.4316		107022	/3 70/	0 / 2 [0 21 0 56]	
Yang 2001 Subtotal (95% CI)			106533	107923	43.7%	0.42 [0.31, 0.56]	•
Yang 2001 Subtotal (95% CI) Heterogeneity: Tau² =	: 0.04; Chi² = 6.05, d	df = 4 (P	106533		43.7%	0.42 [0.31, 0.56]	•
Yang 2009 Yang 2001 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	: 0.04; Chi² = 6.05, d	df = 4 (P	106533 = 0.20);			0.42 [0.31, 0.56] 0.42 [0.36, 0.50]	 ◆
Yang 2001 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	: 0.04; Chi ² = 6.05, d Z = 5.95 (P < 0.000 : 0.01; Chi ² = 12.15,	df = 4 (P 001) df = 11	106533 = 0.20); 224450	l ² = 34% 227230			◆ ↓ 0.01 0.1 1 10

Vi-PS versus control

Summary of findings: Vi-PS versus control for preventing Typhoid fever

	Anticipated absolute effects (95% CI)Risk withRisk with		Relative	Number of	Certainty of			
			effect	participants	the evidence			
Outcomes	control	vaccine	(95% CI)	(studies)	(GRADE)			
Ty	Ty21a versus placebo for blood culture confirmed S. Typhi							
Vi-PS versus control for blood culture confirmed S. Typhi								
Incidence of Typhoid	$60 m_{om} 10 000$	20 per 10,000	RR 0.33	18291	$\oplus \oplus \oplus \oplus$			
fever at 1 year	60 per 10,000	(11 to 34)	(0.19 to 0.56)	(2 RCTs)	High			
Incidence of Typhoid	21 mar 10 000	9 per 10,000	RR 0.44	207549	$\oplus \oplus \oplus \bigcirc$			
fever at 2 years	21 per 10,000	(7 to 12)	(0.32 to 0.60)	(4 RCTs)	Moderateh			
Cumulative incidence		10 per 10,000	DD 0 43	214456				
of Typhoid fever at 1 to	25 per 10,000	(8 to 14)	RR 0.42	214456	$\oplus \oplus \oplus \bigcirc$			
3 years	L Á		(0.31 to 0.56)	(5 RCTs)	Moderate ^h			

Footnotes

h. High risk of bias was observed in one study (Sur 2009) as the two vaccines (control & typhoid vaccine) were not packaged in an identical fashion therefore allocation concealment and blinding were compromised.

TCV versus control

Summary of findings: TCV versus control for preventing Typhoid fever

	Anticipated al	bsolute effects							
	(95% CI)		Relative	Number of	Certainty of the				
	Risk with Risk with		effect	participants	evidence				
Outcomes	control	vaccine	(95% CI)	(studies)	(GRADE)				
]	TCV versus control for blood culture confirmed S. Typhi								
Incidence of Typhoid	57 mar 10 000	9 per 10,000	RR 0.15	83000	$\oplus \oplus \oplus \bigcirc$				
fever at 1 year	57 per 10,000	(6 to 12)	(0.11 to 0.21)	(3 RCTs)	Moderate ⁱ				
Incidence of Typhoid	$52 m_{or} 10,000$	10 per 10,000	RR 0.20	48149	$\oplus \oplus \oplus \bigcirc$				
fever at 2 years	52 per 10,000	(7 to 16)	(0.13 to 0.31)	(2 RCTs)	Moderate ⁱ				
Cumulative incidence		10 per 10,000	DD 0 17	111120					
of Typhoid fever at 1 to	59 per 10,000	(8 to 13)	RR 0.17	111130					
2 years			(0.13 to 0.23)	(4 RCTs)	Moderate ⁱ				

Footnotes

i. High risk of bias was observed in one study (Mitra 2016) in multiple domains including allocation concealment, blinding selective reporting and other biases (analysis not adjusted for clustering, results might have been affected due to seasonal variations and baseline differences were observed between demographics of vaccines versus control 24 group. High risk of bias in blinding was observed in two studies (Patel 2021, Qadri 2021).

Subgroup Analysis

Results

Test for subgroup differences: $Chi^2 = 3.94$, df = 1 (P = 0.05), l² = 74.6%

Summary of findings: TCV versus control for preventing Typhoid fever in different age groups

	Anticipated absolute effects (95% CI)Risk withRisk with			Number of	Certainty of
			Relative effect	participants	the evidence
Outcomes	control	vaccine	(95% CI)	(studies)	(GRADE)
TCV versus control	for blood cultu	ire confirmed	S. Typhi in diffe	rent age grou	ıps
Incidence of Typhoid fever -	7 por 1.000	2 per 1,000	RR 0.27	35771	$\oplus \oplus \oplus \bigcirc$
children <5 years	7 per 1,000	(1 to 3)	(0.15 to 0.47)	(3 RCTs)	Moderate ^d
Incidence of Typhoid fever -	5 por 1 000	1 per 1,000	RR 0.13	72980	$\oplus \oplus \oplus \bigcirc$
children ≥5 years	5 per 1,000	(0 to 1)	(0.09 to 0.20)	(3 RCTs)	Moderate ^d

Conclusions

- The data from included trials provide promising results regarding the efficacy of TCV in typhoid endemic countries.
- The efficacy of TCV is found to be higher than that of the previously licensed vaccines.
- The longer-term efficacy of TCV and the need for booster dose for younger children must be assessed.

Acknowledgments

TYPHOID & 13th **OTHER INVASIVE** INTERNATIONAL **SALMONELLOSES** CONFERENCE

December 5-7, 2023 | Kigali, Rwanda

Prof. Per Ashorn

Prof. Farah Naz Qamar Dr. Rehana A. Salam

THE AGA KHAN UNIVERSITY

Tahir Yousafzai

Zoya Haq

Dr. Jay Das

THANK YOU