Previous efforts to model typhoid burden

RESEARCH ARTICLE

The burden of typhoid fever in low- and middle-income countries: A meta-regression approach

Marina Antillón¹*, Joshua L. Warren², Forrest W. Crawford², Daniel M. Weinberger¹, Esra Küürüm³, Gi Deok Pak⁴, Florian Marks⁵, Virginia E. Pitzer⁶

Estimating the incidence of typhoid fever and other febrile illnesses in developing countries

John A Crump ³, Fouad G Youssef, Stephen P Luby, Momtaz O Wasfy, Josefa M Rangel, Maha Taalat, Said A Oun, Frank J Mahoney

The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017

GBD 2017 Typhoid and Paratyphoid Collaborators ¹. Show footnotes
Additional population-based studies of typhoid fever

- Studies in previous model (published 1980-2013) (32 studies, 22 locations)
- Studies in new model (published 1980-2021) (43 studies, 60 locations)
Comparison to most recent incidence data

- SEAP
- SETA
- STRATAA
- Lao PDR & Myanmar
Objective

• Interpolate data from incidence studies (overall and for specific age-groups) to predict typhoid incidence at the national level, particularly for countries where no blood-culture-confirmed incidence evidence is available.
 • All LICs, LMICs, and UMICs – 145 countries
• Explore ways to estimate subnational variation in typhoid incidence
• Quantify uncertainty
 • It may not be necessary (or possible) to have a precise estimate of incidence, but knowing whether incidence is likely to be low (<10 per 100K person-years), medium (10-100 per 100K person-years), high (100-500 per 100K person-years), or very high (>500 per 100K person-years) is important for informing policy decisions
Approach

Data

• Population-based incidence studies with blood-culture confirmed cases
• Age groups noted: overall incidence, 0-2, 2-5, 5-15, 15+ years, or any combination of these
• Contextual information: catchment population, % individuals enrolled, blood culture volume collected.
• Widely available economic, environmental, and demographic covariates, which we map to the location of the study.

Methods

• Statistical model
• Bayesian approach to account for all sources of uncertainty.
• Using adjusted reported incidence from studies that report it
Adjustments to crude incidence data

Adjusted "true" typhoid fever incidence

Cases who sought care for fever at study facilities

Cases who were enrolled and had blood collected for culturing

Observed blood-culture-confirmed cases and person-time under surveillance

Adjustment for healthcare seeking (assumed to be 100% for active surveillance studies, estimated for passive surveillance studies)

Adjustment for proportion who met fever criteria who were enrolled

Adjustment for blood culture sensitivity (by age group)

Predictors included

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Resolution</th>
<th>Mean and range in estimation sample</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population density</td>
<td>1/4x1/4 degree</td>
<td>3,643 (0-18,467)</td>
<td>NASA SEDAC</td>
</tr>
<tr>
<td>GDP per capita PPP, 2015 USD</td>
<td>1/12x1/12 degree</td>
<td>6,709 (736-37772)</td>
<td>Aalto University</td>
</tr>
<tr>
<td>Gini coefficient</td>
<td>Subnational</td>
<td>0.193 (0.024-0.638)</td>
<td>Global Data Lab</td>
</tr>
<tr>
<td>Access to piped water</td>
<td>Subnational</td>
<td>50.31 (0-100)</td>
<td>Global Data Lab</td>
</tr>
<tr>
<td>Open defecation</td>
<td>National</td>
<td>13.15 (1.02-68.10)</td>
<td>WHO JMP</td>
</tr>
<tr>
<td>% roads paved</td>
<td>National</td>
<td>39.31 (3.5-100)</td>
<td>International Roads Federation + WBDI</td>
</tr>
<tr>
<td>Prevalence of stunting</td>
<td>Subnational</td>
<td>23.94 (0-69.10)</td>
<td>Global Data Lab</td>
</tr>
<tr>
<td>Mean years of education, women</td>
<td>Subnational</td>
<td>6.55 (0.10-14.27)</td>
<td>Global Data Lab</td>
</tr>
<tr>
<td>HIV prevalence</td>
<td>National</td>
<td>1.96 (0.1-28.6)</td>
<td>World Bank</td>
</tr>
<tr>
<td>International Wealth Index <50 (% people)</td>
<td>Subnational</td>
<td>59.62 (6.27-95.31)</td>
<td>Global Data Lab</td>
</tr>
<tr>
<td>Low/high rainfall (binary variable)</td>
<td>2.5x2.5 degree</td>
<td>Low10.35% High8.11%</td>
<td>Global Precipitation Climatology Project (GPCP)</td>
</tr>
</tbody>
</table>
Predictors included

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Resolution</th>
<th>Mean and range in estimation sample</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population density</td>
<td>1/4x1/4 degree</td>
<td>3,643 (0-18,467)</td>
<td>NASA SEDAC</td>
</tr>
<tr>
<td>GDP per capita PPP, 2015 USD</td>
<td>1/12x1/12 degree</td>
<td>6,709 (736-37772)</td>
<td>Aalto University</td>
</tr>
<tr>
<td>Gini coefficient</td>
<td>Subnational</td>
<td>0.193 (0.024-0.638)</td>
<td>Global Data Lab</td>
</tr>
<tr>
<td>Access to piped water</td>
<td>Subnational</td>
<td>50.31 (0-100)</td>
<td>Global Data Lab</td>
</tr>
<tr>
<td>Open defecation</td>
<td>National</td>
<td>13.15 (1.02-68.10)</td>
<td>WHO JMP</td>
</tr>
<tr>
<td>% roads paved</td>
<td>National</td>
<td>39.31 (3.5-100)</td>
<td>International Roads Federation + WBDI</td>
</tr>
<tr>
<td>Prevalence of stunting</td>
<td>Subnational</td>
<td>23.94 (0-69.10)</td>
<td>Global Data Lab</td>
</tr>
<tr>
<td>Mean years of education, women</td>
<td>Subnational</td>
<td>6.55 (0.10-14.27)</td>
<td>Global Data Lab</td>
</tr>
<tr>
<td>HIV prevalence</td>
<td>National</td>
<td>1.96 (0.1-28.6)</td>
<td>World Bank</td>
</tr>
<tr>
<td>International Wealth Index <50 (%) people</td>
<td>Subnational</td>
<td>59.62 (6.27-95.31)</td>
<td>Global Data Lab</td>
</tr>
<tr>
<td>Low/high rainfall (binary variable)</td>
<td>2.5x2.5 degree</td>
<td>Low10.35% High8.11%</td>
<td>Global Precipitation Climatology Project (GPCP)</td>
</tr>
</tbody>
</table>
Model fit

0-2

2-4

6-15

15+
Global burden of typhoid fever: 19.3 million cases, 90% CI (6.5-64.2M)
Age-specific incidence

Incidence per 100K persons
ages 0-1

Incidence per 100K persons
ages 2-4

Incidence per 100K persons
ages 5-15

Incidence per 100K persons
ages 15+
Work in progress, future directions

Ongoing efforts
- Further assessing model convergence
- Consider additional covariates and/or spatial random effects
- Potentially include serosurveillance data

Beyond scope
- Antibiotic resistance
- Additional outcomes: hospitalizations, complications, etc.
- Typhoid fever as a proportion of all fevers, enteric infections, etc.
- Asymptomatic/subclinical infection
Thank you!

Harsh Harkare
harshvivek.harkare@swisstph.ch

Marina Antillon, Ottavia Prunas, Virginia Pitzer
Predictors of typhoid incidence
Model details

- Generalized linear mixed-effects model
 - **Age-group** and **location-specific** incidence modeled as a function of predictor variables and random effects

\[
\log(\lambda_{aj}) = B_{0j} + B_{aj} + \log(\text{person-time}_{aj})
\]

Intercept:
Overall incidence

Slope:
Relative incidence for age group \(a\)

Covariates

Incidence in reference age group (5-15 yo)

IRR for other age groups vs reference
Probability of categories of overall incidence:

- Probability of Low Incidence: <10 per 100,000 Person-Years
- Probability of Medium Incidence: 10-<100 per 100,000 Person-Years
- Probability of High Incidence: 100-<500 per 100,000 Person-Years
- Probability of Very High Incidence: 500+ per 100,000 Person-Years