

The Burden and Trend of Typhoid Fever in Low- and Middle-Income Countries: An Updated Meta-Regression Approach

13th International Conference on Typhoid and Other Invasive Salmonelloses, Kigali, Rwanda

Harsh Harkare

w/ Marina Antillon, Ottavia Prunas, Virginia Pitzer 6th December 2023

Previous efforts to model typhoid burden

RESEARCH ARTICLE

The burden of typhoid fever in low- and middle-income countries: A meta-regression approach

Marina Antillón¹*, Joshua L. Warren², Forrest W. Crawford², Daniel M. Weinberger¹, Esra Kürüm³, Gi Deok Pak⁴, Florian Marks⁴, Virginia E. Pitzer¹

> Emerg Infect Dis. 2003 May;9(5):539-44. doi: 10.3201/eid0905.020428.

Estimating the incidence of typhoid fever and other febrile illnesses in developing countries

John A Crump ¹, Fouad G Youssef, Stephen P Luby, Momtaz O Wasfy, Josefa M Rangel, Maha Taalat, Said A Oun, Frank J Mahoney

The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017

GBD 2017 Typhoid and Paratyphoid Collaborators $\,^{\dagger}\,$ • $\,$ Show footnotes

Additional population-based studies of typhoid fever

Incidence data in the updated burden model

 Studies in previous model (published 1980-2013)
 <u>(32 studies, 22 locations)</u>

Studies in new model (published 1980-2021) (43 studies, 60 locations)

Comparison to most recent incidence data

- SEAP
- SETA
- STRATAA
- Lao PDR & Myanmar

Objective

- Interpolate data from incidence studies (overall and for specific age-groups) to predict typhoid incidence at the national level, particularly for countries where no blood-culture-confirmed incidence evidence is available.
 - All LICs, LMICs, and UMICs 145 countries
- Explore ways to estimate subnational variation in typhoid incidence
- Quantify uncertainty
 - It may not be necessary (or possible) to have a precise estimate of incidence, but knowing whether incidence is likely to be low (<10 per 100K person-years), medium (10-100 per 100K person-years), high (100-500 per 100K personyears), or very high (>500 per 100K person-years) is important for informing policy decisions

Approach

Data

- Population-based incidence studies with blood-culture confirmed cases
- Age groups noted: overall incidence, 0-2, 2-5, 5-15, 15+ years, or any combination of these
- Contextual information: catchment population, % individuals enrolled, blood culture volume collected.
- Widely available economic, environmental, and demographic covariates, which we map to the location of the study.

Methods

- Statistical model
- Bayesian approach to account for all sources of uncertainty.
- Using adjusted reported incidence from studies that report it

Adjustments to crude incidence data

Predictors included

Covariate	Resolution	Mean and range in estimation sample	Source
Population density	1/4x1/4 degree	3,643 (0-18,467)	NASA SEDAC
GDP per capita PPP, 2015 USD	1/12x1/12 degree	6,709 (736-37772)	Aalto University
Gini coefficient	Subnational	0.193 (0.024-0.638)	Global Data Lab
Access to piped water	Subnational	50.31 (0-100)	Global Data Lab
Open defecation	National	13.15 (1.02-68.10)	WHO JMP
% roads paved	National	39.31 (3.5-100)	International Roads Federation + WBDI
Prevalence of stunting	Subnational	23.94 (0-69.10)	Global Data Lab
Mean years of education, women	Subnational	6.55 (0.10-14.27)	Global Data Lab
HIV prevalence	National	1.96 (0.1-28.6)	World Bank
International Wealth Index <50 (% people)	Subnational	59.62 (6.27-95.31)	Global Data Lab
Low/high rainfall (binary variable)	2.5x2.5 degree	Low~10.35% High~8.11%	Global Precipitation Climatology Project (GPCP)

Predictors included

	Covariate	Resolution	Mean and range in estimation sample	Source
•	Population density	1/4x1/4 degree	3,643 (0-18,467)	NASA SEDAC
	GDP per capita PPP, 2015 USD	1/12x1/12 degree	6,709 (736-37772)	Aalto University
	Gini coefficient	Subnational	0.193 (0.024-0.638)	Global Data Lab
	Access to piped water	Subnational	50.31 (0-100)	Global Data Lab
	Open defecation	National	13.15 (1.02-68.10)	WHO JMP
	% roads paved	National	39.31 (3.5-100)	International Roads Federation + WBDI
	Prevalence of stunting	Subnational	23.94 (0-69.10)	Global Data Lab
	Mean years of education, women	Subnational	6.55 (0.10-14.27)	Global Data Lab
	HIV prevalence	National	1.96 (0.1-28.6)	World Bank
	International Wealth Index <50 (% people)	Subnational	59.62 (6.27-95.31)	Global Data Lab
	Low/high rainfall (binary variable)	2.5x2.5 degree	Low~10.35% High~8.11%	Global Precipitation Climatology Project (GPCP)

Model fit

obs_cases_515

obs_cases_15o

Global burden of typhoid fever: 19.3 million cases, 90% CI (6.5-64.2M)

Age-specific incidence

Work in progress, future directions

Ongoing efforts

- Further assessing model convergence
- Consider additional covariates and/or spatial random effects
- Potentially include serosurveillance data

Beyond scope

- Antibiotic resistance
- Additional outcomes: hospitalizations, complications, etc
- Typhoid fever as a proportion of all fevers, enteric infections, etc.
- Asymptomatic/subclinical infection

Thank you!

Harsh Harkare harshvivek.harkare@swisstph.ch

Marina Antillon, Ottavia Prunas, Virginia Pitzer

Typkoid Vaccine Acceleration Consortium

BILL& MELINDA GATES foundation

Predictors of typhoid incidence

Model details

- Generalized linear mixed-effects model
 - **Age-group** and **location-specific** incidence modeled as a function of predictor variables and random effects

$$log(\lambda_{a,j}) = B_{0,j} + B_{a,j} + log(person-time_{a,j})$$
Incidence in reference age groups vs reference
group (5-15 yo) IRR for other age groups vs reference
Intercept:
Overall incidence $B_{0,j} = \beta_0 + \sqrt{X_j} + \alpha_{0,j}$ random effects
Relative $B_{a,j} = \beta_a + \eta_a X_j + \alpha_{a,j}$ random effects
Relative for age group α

Actual Cases_{*a,j*} ~ Poisson($\lambda_{a,j}$ |person-time_{*a,j*})

Probability of categories of overall incidence

Probability of Low Incidence: **Probability of Medium Incidence:** <10 per 100,000 Person-Years 10-<100 per 100,000 Person-Years 0.9 0.8 0.7 0.6 0.5 Probability of High Incidence: Probability of Very High Incidence: 100-<500 per 100,000 Person-Years 500+ per 100,000 Person-Years 0.4

0.3 0.2 0.1