The MENA Typhoid Project: New Insights on Typhoid Burden and Antibiotic Resistance

Kristen Heitzinger, PhD, MPH
On behalf of the MENA Typhoid Project Collaborators

December 7, 2023
What is the MENA Typhoid Project?

• A collaboration between the American University of Beirut (AUB), WHO, and US CDC to enhance typhoid surveillance and control measures in the Middle East and North African (MENA)/Eastern Mediterranean region
• Includes non-laboratory and laboratory-focused initiatives
The MENA Typhoid project: Non-laboratory Initiatives

- Published review of typhoid fever occurrence and antibiotic resistance in the Eastern Mediterranean region from 1990-2021*
 - ~45,000 blood culture-confirmed cases identified from 12 countries
 - Limited burden data, especially from countries outside of Pakistan (22/70 or 31% of studies)
 - Of 56 studies with AMR data:
 - 68% of isolates were fluoroquinolone resistant
 - 40% MDR
 - 48% XDR of tested isolates from Pakistan

The MENA Typhoid project: Non-laboratory Initiatives

- Typhoid fever surveillance systems and vaccination policy survey
- Regional workshop on challenges and opportunities related to typhoid fever laboratory surveillance and TCV introduction
The MENA Typhoid project: Laboratory Surveillance

- Antibiotic susceptibility testing (AST)
 - Broth microdilution
 - All experiments run in duplicate
 - MDR=resistance to ampicillin, chloramphenicol, and trimethoprim/sulfamoxazole
 - XDR=MDR+resistance to fluoroquinolones and third generation cephalosporins
- Whole genome sequencing (WGS) on Illumina MiSeq sequencer
- All sequences shared publicly on NCBI

Phenotype
Genotype
Metadata
The majority of isolates were resistant to chloramphenicol (98%), ampicillin (68%), nalidixic acid (65%), and trimethoprim/sulfamethoxazole (56%).

All isolates susceptible to azithromycin, meropenem, colistin, and gentamicin.

- 67% (20/30) of isolates from Jordan were MDR.
- 100% (22/22) of isolates from Pakistan and 19% (7/36) from Oman (all Pakistan travel-associated) were XDR.
- 72% (13/18) of isolates from Iraq were ceftriaxone resistant.

*Ceftriaxone refers to ceftriaxone resistance without MDR or XDR. Ciprofloxacin refers to ciprofloxacin resistance without MDR or XDR.
Laboratory Surveillance Results to Date: WGS

• The majority (88%; 93/106) of isolates belonged to the H58 haplotype
Chloramphenicol resistance without known genetic determinants

• 43% (46/106) of isolates demonstrated chloramphenicol resistance without any relevant genetic determinants of chloramphenicol resistance

• Discordance was observed only in isolates from Iraq, Jordan, and Oman
Implications for Typhoid Control

• Chloramphenicol resistance by AST without genetic determinants underscores importance of maintaining capacity to perform culture with AST to inform empiric treatment

• Travel-associated XDR cases in Oman underscore the risk of spread of XDR S. Typhi from Pakistan

• Results highlight the continued need to improve surveillance for rapid detection and effective implementation of control measures
Next Steps: The Role of Data Moving Forward

- Continued country recruitment and results dissemination
- Continued phenotypic and genotypic analysis to accurately characterize resistance, understand linkages with regional and global strains, and anticipate future risk of drug-resistant strains
- Leverage of partnerships to encourage public sharing of surveillance data and support countries in using available data to inform control measures
Acknowledgements

AUB
Tony Abou Fayad
Jana Ezzeddine
Ghassan Matar
Ahmad Sleiman

WHO-EMRO
Abdinasir Abubakar
Evans Buliva
Sherein El Nossery
Muhammed Tayyab

WHO-HQ
Adwoa Bentsi-Enchill
Musa Hindiya
Anna Minta

CDC
Lucy Breakwell
Hayat Caidi
Lavin Joseph
Graeme Prentice-Mott
Morgan Schroeder
Yesser Sebeh
David Shih
Kaitlin Tagg

Country Collaborators
Afreenish Amir (Pakistan)
Rula Hanam (Jordan)
Azza Rashdi (Oman)
Iraq Central Public Health Laboratory

University of Cantabria
Arancha Peñil-Celis

Gavi
Allyson Russell
Lee Hampton