

Severe Anaemia and Invasive Non-Typhoidal *Salmonella* Bacteraemia in Kenyan Children

Kelvin Mokaya Abuga

13th International Conference on Typhoid and other Salmonelloses

5th December 2023

Anaemia – A global problem

	Global	Central Europe, eastern Europe, and central Asia	High income	Latin America and Caribbean	North Africa and Middle East	South Asia	Southeast Asia, east Asia, and Oceania	Sub-Saharan Africa
Dietary iron deficiency	1	1	1	1	1	1	1	1
Haemoglobinopathies and haemolytic anaemias	2	2	2	2	2	2	2	3
Other neglected tropical diseases	3	3	4	3	3	3	3	4
Other unspecified infectious diseases	4	4	5	4	4	4	4	7
Malaria	5	14	15	10	10	8	10	2
Vitamin A deficiency	6	8	10	5	5	6	7	5
ntestinal nematode infections	7	12	14	8	13	5	8	6
Chronic kidney disease	8	5	3	6	7	7	6	9
Endocrine, metabolic, blood, and immune disorders	9	6	6	7	8	9	5	10
Gynaecological diseases	10	7	7	11	6	10	12	13
Schistosomiasis	11	16	16	12	9	16	13	8
Upper digestive system diseases	12	9	8	9	12	11	9	14
Maternal disorders	13	10	11	13	11	12	1	12
HIV/AIDS	14	15	13	14	16	15	16	11
Cirrhosis and other chronic liver diseases	15	13	12	15	14	13	14	15
Inflammatory bowel disease	16	11	9	16	15	14	15	16

Severe anaemia is associated with bacteraemia

Author	Country		OR (95% CI)	n/N	Severe anaemia aetiology	
Nielsen et al.	Ghana		2.5 (1.3, 4.5)	28/46	Children with malaria	
Moon et al.	Mozambique		3.9 (1.7, 9.0)	14/39	HIV-infected adults	✓ Small sample sizes
Were et al.	Kenya	↓ •	1.6 (0.9, 3.0)	30/59	Children with malaria	✓ Single causes of
Nadjm et al.	Tanzania		1.6 (1.1, 2.1)	N/A	Severe anaemia overall	severe anaemia
Sigauque et al.	Mozambique	←	1.1 (0.9, 1.4)	96/1,550	Severe anaemia overall	✓ Reverse causality?
Williams et al.	Kenya	$ \longrightarrow$	26.3 (14.5, 47.6)	108	Sickle cell anaemia	• Neverse causanty:
Calis et al.	Malawi		5.3 (2.6, 10.9)	54	Severe anaemia overall	
Bachou et al.	Uganda —	↓	2.3 (0.5, 10.2)	2/56	Malnourished children	
Lackritz et al.	Kenya —	-	1.0 (0.6, 1.7)	37/303	Severe anaemia overall	
	.25	1 1 1 1 1 1 5 10 20 40	0	N/A - Not	available	

n = Severe anaemia with bacteraemia N = Total bacteraemia

Severe anaemia might increase risk of iNTS Pathogenic bacteria Haem Bone HCP-Fe³⁺ 1 Increased gut Fe²⁺ permeability TfR Commensals HO-1 Erythroblast FPN 2 Increased ERFE Transferrin Fe³⁺ Ferritin Hepcidin Fe² erythropoietic Heph drive Fe²⁺ Cp Pathogenic bacteria **N**TBI Ferritin Tf_R Fe² Gut epithelia X SCV CD163 Impaired 4 Haem -- IFN-vy HO-1 Immune CD91 Neutrophil function **IL-10** Haptoglobin FPN Increased 3 Haemopexin Macrophage haemolysis Haemolysis

Abuga et al. 2021, IJMS

Approaches

- 1. Epidemiological associations between severe anaemia and iNTS.
- 2. Assays of iron and immune-mediated biomarkers.
- 3. Bacterial growth assays.
- 4. Effects of anaemia on NTS vaccine responses.

Anaemia is prevalent among children living in Kilifi, Kenya

Community surveys (N=6,717)

Anaemia prevalence (%)

Overall 75.5% Anaemia prevalence (%) 1999 Year Mild Moderate Severe

Hospital admissions (N=102,559)

Anaemia classified based on age-dependent World Health Organization (2011) and GBD anaemia collaborators (2023, Lancet Haemat.) cut-offs

iNTS remains an important cause of paediatric admissions

Bacteraemia, n=5,050 (4.9%)

--- Non-typhoidal Salmonella

--- Klebsiella pneumoniae

- Haemophilus influenzae

Streptococcus pneumoniae

Staphylococcus aureus

Escherichia coli

iNTS, n=474 (9.4% of bacteraemia)

- Salmonella Enteritidis: 154 (32.5%)
- Salmonella Typhimurium: 149 (31.4%)
- Not typeable: 39 (8.2%)
- Not tested: 132 (27.8%)

In-hospital iNTS mortality = <u>21.4%</u> (vs 8.2% overall)

> Abuga et al., haematologica, 2022; Muthumbi et al., CID, 2015

Severe anaemia associated with 4-fold increased risk of iNTS

OR (95% CI) 2.18 (2.03-2.34) Bacteraemia H 2.51 (2.19–2.88) Streptococcus pneumoniae Staphylococcus aureus -0.96 (0.76-1.20) 3.59 (2.98-4.33) Escherichia coli -4.64 (3.81–5.65) Non-typhoidal Salmonella -Klebsiella pneumoniae 1.34 (0.98–1.85) 1.14 (0.86–1.50) Acinetobacter species 3.84 (3.00-4.89) Haemophilus influenzae 2.00 (1.38-2.89) Pseudomonas aeruginosa 1.53 (1.18–1.97) Other Gram Negatives 1.28 (1.01–1.62) Other Gram Positives -5 *Odds ratios adjusted for 0 2 3 4 age, sex, year of admission Odds Ratio and number of readmissions

Risk of iNTS was not age-dependent, but increased with each 1g/dL decrease in haemoglobin levels

Haemoglobin levels

iNTS risk in severely anaemic children with and without malaria

Low hepcidin and high plasma iron levels in severe anaemia

SA – severe anaemia (n=52); NTS – non-typhoidal Salmonella (n=44); SA+NTS (n=29)

High iron levels associated with bacterial growth in-vitro

Severe anaemia doesn't impair cytokine production in children with iNTS

SA – severe anaemia (n=52); NTS – non-typhoidal Salmonella (n=44); SA+NTS (n=29)

Why this work is important

- Anaemia and iNTS are important causes of hospitalization and death
- Strategies to manage iNTS remain ineffective.

• Understanding underlying risk factors for iNTS (such as severe anaemia) \rightarrow better interventions.

Summary

• Anaemia and iNTS are prevalent among Kenyan children.

• Severe anaemia is associated with a four-fold increased risk of iNTS.

• The risk is independent of malaria parasitaemia.

• Severe anaemia may increase iNTS risk through iron-dependent mechanisms.

Acknowledgements

KEMRI Wellcome Trust

With Support From

AESA AN INITIATIVE OF AAS & NEPAD AGENCY

The Open University

Supervisors

Prof Sarah Atkinson Dr Manfred Nairz Prof Calman MacLennan

KEMRI Wellcome Trust

Prof Anthony Scott Prof Thomas Williams Prof Philip Bejon Dr Esther Muthumbi Dr John Muriuki Dr Reagan Mogire Henry Karanja Agnes Mutua Alex Macharia Johnstone Makale MEDIZINISCHE UNIVERSITÄT

Prof Dr Günter Weiss Dr Clemens Gerher Dr Philip Grubwiesser

Dr Kerry Jones

КĶ

Prof Alison Elliott Dr Gyaviira Nkurunungi

Prof Sam Kinyanjui Dr Dorcas Mbuvi Liz Murabu

