Advances in serology for enteric fever diagnostics and sero-surveillance

Richelle Charles, MD

December 2023
Impact of lack of rapid diagnostics for enteric fever

Over diagnosis and over-prescribing of anti-typhoid antimicrobials

- Driven emergence of antimicrobial resistance
 - Specifically, fluoroquinolone resistance in Asia
 - Now there is emergence of extensively drug resistant *Salmonella Typhi* (XDR) = MDR + FQ + 3rd gen. cephalosporin resistance

Surveillance equity gaps

- Many LMICs lack incidence data
- Major gaps exist across Africa, Asia, and the Middle East and central America.
- May lead to vaccine equity gaps
Current enteric fever diagnostics lack sensitivity and specificity

Blood Culture

Result takes 2 days
Requires laboratory capacity
60% sensitive

PCR

DNA extraction

Amplification

Results

Antibody-based assays

Lack of specificity

Requires laboratory capacity
Current enteric fever diagnostics lack sensitivity and specificity

Blood Culture

- 60% sensitive
- Result takes 2 days
- Requires laboratory capacity

PCR

- DNA extraction
- Amplification
- Results

Antibody-based assays

- Lack of specificity
Current enteric fever diagnostics lack sensitivity and specificity

Blood Culture

60% sensitive
Result takes 2 days
Requires laboratory capacity

PCR

DNA extraction
Amplification
Results

Requires laboratory capacity

Antibody-based assays

Lack of specificity
Biomarker screens identified seroresponses with better diagnostic accuracy

Charles RC et al., CVI 2010 Aug;17(8):1188-95

Assessment of the sensitivity and specificity of Anti-HlyE and LPS IgA

Sensitivity of 90% and specificity of 92%
DPP Typhoid Assay

- Generate a rapid test on detecting IgA antibody responses targeting LPS and HlyE of S. Typhi and S. Paratyphi A

DPP® Test Cassette DPP® Micro Reader

Specificity of 96% and sensitivity of 90%.

*Kumar et al. 2020. mSphere 5:e00253-20.
Prospective Study of DPP in Bangladesh

Dr. Sira Jam Munira

CHRF team

A) Study Design

Enrollment

≥ 3 days of fever

Bangladesh Shisu Hospital

n = 501

Samples collected

Venous blood (N=501)

Capillary blood (N=299)

NP swab (N=416)

Diagnostic assays performed

- Blood culture
- Molecular assays (qPCR)
 - Influenza A/B
 - RSV
 - Dengue
 - Rickettsia spp.
- Serologic assays
 - DPP Typhoid Assay
 - Widal
 - Test/A Typhoid IgM

B) Classification of cohort

Enteric fever case
N=77

S. Typhi
N=62
S. Paratyphi A
N=15

Alternative etiology
N=70

Dengue
N=23
Rickettsia
N=7

Blood culture negative
N=424

Influenza
N=34
RSV
N=7

No infectious etiology
N=354
DPP Typhoid Assay

• We used Bayesian latent class models incorporating the results from all the typhoid and alternative etiology diagnostics to estimate the true sensitivity and specificity of DPP Typhoid

• The AUC for the DPPT in distinguishing typhoid from alternative etiologies was 97% (95% CI: 94-99%).

<table>
<thead>
<tr>
<th>Test</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Balanced accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPPT assay</td>
<td>93% (87 - 97)</td>
<td>89% (85 - 93)</td>
<td>91% (87 - 94)</td>
</tr>
<tr>
<td>Test-It</td>
<td>54% (49 - 59)</td>
<td>100% (100 – 100)</td>
<td>77% (74 - 79)</td>
</tr>
<tr>
<td>Widal ≥ 1:160</td>
<td>48% (43 - 53)</td>
<td>92% (90 – 94)</td>
<td>70% (67 - 73)</td>
</tr>
<tr>
<td>Blood culture</td>
<td>62% (55 - 69)</td>
<td>100% (100 – 100)</td>
<td>81% (78 - 85)</td>
</tr>
</tbody>
</table>
Using HlyE Ig for sero-surveillance

- Serological surveillance may be a more versatile and cost-effective approach to evaluating the burden of disease
- Overcomes some of the limitations of current culture-based surveillance
- Available for countries that lack infrastructure for culture-based surveillance
Took longitudinal data from >1400 cases and used Bayesian hierarchical modeling to estimate the antibody kinetics of HlyE.

We then apply the cross-sectional data to estimate time-since infection and incidence.

Aiemjoy et al, *Lancet Microbe*, 2022
Comparison of estimates for crude and adjusted clinical enteric fever incidence with typhoidal *Salmonella* seroincidence

Aiemjoy et al, *Lancet Microbe*, 2022
Conclusion

Diagnostics
• We have promising new diagnostic tools based on the detection of IgA responses to LPS and HlyE

• Today Poster #70

• December 7th at 11 am

Serosurveillance
• We have a new tools for sero-surveillance tools for enteric fever based on the antibody detection

• Today at 1:30
 • Bridging the gap: environmental and eero-surveillance for estimating typhoid burden and supporting vaccine introduction.
Acknowledgements

BANGLADESH/ICDDR,B
FIRDAUSI QADRI
FARHANA KHANAM

BANGLADESH/CHRF
SAMIR Saha
SENJUTI Saha
SAIFUL SAJIB
SHAKIUL KABIR
SIRA JAM MUNIRA
SYED MUKTADIR AL SIUM
ANIK SARKAR
NAHID SHOHAN
FARAH NUSRAT ZAHAN
SULTANA AFLTUN RUBANA

NEPAL
DIPESH TAMRAKAR
KRISTA VAIDYA
NISHAN KATUWAL
SONY SHRESTHA
SHIV NAGA
JIVAN SHAKYA
YASMIN LADAK

PAKISTAN
FARAH QAMAR
IRUM FATIMA DEHRAJ
FURQAN KABIR
FATIMA AZIZ
JUNAID IQBAL
MARIA FLETCHER
MEHREEN ADNAN
NAJEEB RAHMAN

STANFORD
STEVE LUBY
JASON ANDREWS
CHRIS LEOBA
ALEX YU

MGH
ED RYAN
POLINA KAMENSKAYA
ARIANA NOUDSHANI
CLARE FRASER

IVI
SETA COUNTRY COLLABORATORS
URSULA PANZNER
MEE YOUNG SHIN
MI SUN KIM
GI DEOK PAK
RAPHAEL ZELLWEGER
FLORIAN MARKS

SOUTH SUDAN
JOSEPH WAMALA

EMORY
PETER TEUNIS

UC DAVIS
KRISTEN AIEMJOY

NIH
SABIN VACCINE INSTITUTE

UNIVERSITY OF TORONTO
ISAAC BOGOCH

STANFORD UNIVERSITY
STEVE LUBY
JASON ANDREWS
CHRIS LEBOA
ALEX YU

MGH
ED RYAN
POLINA KAMENSKAYA
ARIANA NOUDSHANI
CLARE FRASER

IVI
SETA COUNTRY COLLABORATORS
URSULA PANZNER
MEE YOUNG SHIN
MI SUN KIM
GI DEOK PAK
RAPHAEL ZELLWEGER
FLORIAN MARKS

SOUTH SUDAN
JOSEPH WAMALA

EMORY
PETER TEUNIS

UC DAVIS
KRISTEN AIEMJOY

NIH
SABIN VACCINE INSTITUTE

UNIVERSITY OF TORONTO
ISAAC BOGOCH