Bridging the Gap: Environmental and Sero-surveillance for Estimating Typhoid Burden

Richelle Charles, MD Mass General Hospital Harvard University

Kristen Aiemjoy, MSc PhD

UC Davis School of Medicine Mahidol University Faculty of Tropical Medicine

Nick Grassly, PhD Imperial College London December 06, 2023

Together We Can Take on Typhoid

a program of the Sabin Vaccine Institute

Typhoid conjugate vaccines are effective but have yet to be widely adopted

Together We Can Take on Typhoid

"Data inequality is our biggest challenge moving forward"

- Kathy Neuzil, ASTMH 2023

Tyvac Typhoid Vaccine Acceleration Consortium

The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of **Disease Study 2017**

GBD 2017 Typhoid and Paratyphoid Collaborators*

 $\mathcal{M} \stackrel{*}{\searrow} \mathbb{O}$

Blood culture confirmed infections

Blood culture performed

Sought care at a surveillance site

Symptomatic infections

All infections (including subclinical)

LATEST ADVANCES IN SEROEPIDEMIOLOGY FOR ENTERIC FEVER

Kristen Aiemjoy, MSc PhD Assistant Professor of Epidemiology Department of Public Health Sciences UC Davis School of Medicine Department of Immunology and Microbiology Mahidol University Faculty of Tropical Medicine kaiemjoy@ucdavis.edu

UCDAVIS HEALTH

Mahidol University Wisdom of the Land

Seroepidemiology & Environmental Surveillance for Enteric Fever (SEES)

THE AGA KHAN UNIVERSITY

Estimating seroincidence using antibody dynamics

- **A**Séroincidence provides actionable evidence:
 - +"The number of **new** infections in this population per year"
- +Antibody dynamics only need to be modeled once
- +Incorporate heterogeneity in antibody responses (instead of ignore)
- + Incorporating signal from multiple antigens/isotypes to improve precision
- +Accommodate biological noise and measurement error

Teunis et al, Stats in Medicine, 2020 Teunis et al, Epidemics, 2016

Settings where blood culture surveillance is not available

+Covid serosurvey (DBS) 2020 +397 samples

South Sudan

lling the gaps

Francis I. Proctor Foundation for Research in Ophthalmology

1000

Typkoid Vaccine Acceleration Consor

Stanford University

KEMF

illing the gaps

TERED UNT

IAN MEDICAL COLLEG

Em

1001

· · · ·

Nigh C

ti.

天子を記る

370

Integrating HlyE into bead-based multiplex assays

Scaling enteric fever serosurveillance: Analytical tools serocalculator 0.1.0.9000 Reference Articles -

Open source analytical package for R available on GitHub https://github.com/UCD -SERG/serocalculator

Analytical training workshops

- Bangkok Aug 2022
- Kigali Dec 2023
- Anywhere you • invite us

National Institute of Allergy and Infectious Diseases

serocalculator

Antibody levels measured in a cross-sectional population sample can be translated into an estimate of the frequency with which seroconversions (infections) occur in the sampled population. In other words, the presence of many high antibody titres indicates that many individuals likely experienced infection recently and the burden of disease is high in the population, while low titres indicate a low frequency of infections in the sampled population and therefore a lower burden of disease.

The serocalculator package was designed to use the longitudinal response characteristics using a set of modeled parameters characterizing the longitudinal response of the selected serum antibodies.

Installing R

The **serocalculator** package is written in R, a free, open-source software program. The end user of this package must have access to a working installation of the R software. We recommend installing base R and a Graphical User Interfaces (GUI) for R such as RStudio.

If you need to download and install R and/or RStudio, we recommend following the tutorial below from Hands On Programming in R by Garrett Grolemund:

Installing R and RStudio: https://rstudio-education.github.io/hopr/starting.html

Installing the Serocalculator Package

The **serocalculator** package must be installed in R before first use. As of November 21, 2023, serocalculator is still in development. To install the development version, you must Browse source code License Community Contributing guide Code of conduct Citation Citing serocalculator

Developers Peter Teunis Author, copyright holder

Kristina Lai Author

Links

GPL-3

Kristen Aiemjoy Author

Douglas Ezra Morrison Author, maintainer

More about authors...

HEALTH

Search for

 \mathbf{O}

Got DBS? Call us

Extra slides

Study Site	Study Name	Age Range (y)	Age< 5 (n)	Total (n)	Year	Reference
Bangladesh Dhaka Mirzapur	SEES	0.5-18	101 151	401 596	2019-2021	https://doi.org/10.1016/S2666-5247(22)00114-8
Kathmandu Valley, Nepal	SEES	0.5-25	186	846	2019-2020	https://doi.org/10.1016/S2666-5247(22)00114-8
Pakistan Karachi Hyderabad	SEES	0.5-25	126	494	2019-2020	https://doi.org/10.1016/S2666-5247(22)00114-8
Agogo Ghana	SETA	2-19	18	79	2016	https://doi.org/10.1016/S2666-5247(22)00114-8
Juba, South Sudan	COVID	1-70	66	1244	2020	<u>https://wwwnc.cdc.gov/eid/article/28/11/22- 0239 article</u>
Dosso, Niger 2015 2020	MORDOR	0-5	449 558	449 558	2015 2020	https://jamanetwork.com/journals/jamanetworkopen/ fullarticle/2787602
Kenya Coastal (Ukunda, Msambweni) Western sites (Chulaimbo, Kisumu)	CHIKV, DENV	3-18	31	1401	2017	https://bmcinfectdis.biomedcentral.com/articles/10.1 186/s12879-023-08157-4
Vellore, India		0-21	364	1217	2022	
Blantyre, Malawi		1-14	387	937	2023	
Bo, Sierra Leone	HEAL-SL	2-95	35	455	2022	Jha P et al, in preparation
Araraquara, Brazil	Dengue cohort	2-16	150	432	2014-2015	https://doi.org/10.1016/j.actatropica.2019.105313
United States California - COVID serosurvey Boston-Pediatric cohort	CA-FACTS	3-50 1-18	3 54	205 80	2021 2017-2020	https://www.researchsquare.com/article/rs- 2548374/v1

Cross-reactive antibody responses in iNTS?

Variation in antibody kinetics by:

Schools as a Platform for Rapid Typhoid Seroepidemiological Assessments: Evidence from Nepal

Shiva Ram Naga Dhulikhel Hospital, Kathmandu University Hospital

Background

- High typhoid burden in Kathmandu Valley; limited evidence in the other regions of Nepal.
- Blood culture surveillance studies are expensive, logistically intensive, and take many years to complete
- Serologic surveys are an alternative approach to generate accurate typhoid incidence estimates
- Schools are a potential alternative population to quickly estimate typhoid burden, but it's unclear whether they provide a representative sample for assessing community exposure to *S*. Typhi

Objectives

- Determine the feasibility of using a school-based sampling frame for typhoid seroepidemiology, evaluating participation rates and resource requirements
- Compare school-based and population-based seroincidence estimates from the same communities to determine whether school-based estimates provide unbiased estimates compared with household-based surveys

Methods

- Random sample of 18 primary and secondary schools
 - 8 in Kavre district
 - 10 in Dolakha district
- Up to 100 children randomly selected from each school
- Inclusion criteria: Age between 4 and 18 years
- Fingerstick capillary blood collected onto filter paper
- HlyE IgG and IgA antibody levels determined by kinetic ELISA
- Estimated seroincidence in each community using previously published methods (Aiemjoy et al, 2022)

School and Population Sample

	Population		School	
	Kathmandu	Kavre	Kavre	Dolakha
Median age (IQR)	12.0 (5.8–17.8)	10.2 (5.1–15.7)	11(8-14)	9(7-12)
Sample size	353	481	816	522
Duration of study, Months	24	24	4	2
Research Staff Required	8	8	4	4
Consent Rate	76.5%	86.4%	88.3%	98.3%

RESULTS

Seroincidence by District and Sampling frame

Seroincidence by Municipality and Sampling frame

Seroincidence by Timepoints and Sampling site

Conclusions

- Seroincidence estimates derived from school based sampling were similar to those derived from household surveys
- Participation rates were higher in school based surveys compared with household surveys, and sampling was able to be performed in a fraction of the time and with fewer personnel, markedly reducing costs
- School-based surveys could enable rapid mapping of typhoid risk in communities where blood culture-based surveillance is not available, as well as monitoring of typhoid exposure trends following vaccine introduction
- In settings where surveys for helminths or other infections are performed at school, typhoid surveys could be part of an integrated surveillance system to leverage resources and enhance scalability

Acknowledgements

Nepal Team:-

Dr. Dipesh Tamrakar, Dr. Rajeev Shrestha, Krista Vaidya, Nishan Katuwal, Sabin Bikram Shahi, Nisha Shrestha, Manisha Banjara, Anil Khanal, Urusha Ranjitkar, Sneha Shrestha, Neeru Suwal.

UC Davis:-

Dr. Kristen Aiemjoy

Harvard Medical School

Dr. Richelle Charles

Stanford Team:-

Dr. Jason Andrews, Christopher Leboa

SABIN Team:-

Dr. Denise Garrett, Dr. Jessica Seidman, Alice Carter, Kate Doyle <u>Funded by:-</u>

BILL& MELINDA GATES foundation

Enteric fever seroincidence estimates using cross-sectional rapid serosurveys in Bangladesh

Presented by Sira Jam Munira Child Health Research Foundation

Study design

For Dhaka and Mirzapur*

✓ From June 2019 to June 2021

 \checkmark Collected dried blood spot samples

For the remaining areas

✓ January to June 2022, 3-5 days for each survey
✓ Collected venous whole blood samples
✓ Additional benefits to participants Blood grouping and Hepatitis B/C tests,
Science camps

Characteristics of the study participants


```
Child Health Research Foundation
```

Prevent Infections, Save Lives

Anti-HlyE IgG response among study participants

By study communities

By age

Child Health Research Foundation

Enteric fever seroincidence among study participants

Study areas	Seroincidence per 100 person-years (95% Cl)	
Dhaka	64.4 (55.4- 75.0)	
Mirzapur	39.0 (34.8- 43.8)	
Chittagong	30.1 (26.4- 34.4)	
Dinajpur	27.3 (23.9- 31.1)	
Sylhet	24.3 (21.3- 27.8)	
Satkhira	21.0 (18.5- 23.9)	
Faridpur	20.7 (18.2- 23.6)	

Child Health Research Foundation Seroincidence per 100 person-years (Age 0 to 22 years)

Enteric fever seroincidence by age group

This tool enables us..

To detect high enteric fever burden areas

To detect priority age groups for enteric fever

Mapping Typhoid Transmission Geospatial Analysis and Seroepidemiology for TCV Prioritization

Dr. Abdul Momin Kazi, MBBS, MPH, PhD (Cand)

Assistant Professor (Research)

Department of Pediatrics & Child Health

The Aga Khan University, Karachi, Pakistan

Data Sources

1. Impact Assessment of Typhoid conjugate vaccine following introduction in Routine Immunization Program of Pakistan (IATRP)

October 2020 to September 2023

- Total cases tested : 30,503
- XDR-positive: 18603

Hospital and Lab based data

2. Serosurveillance and	
Environmental Surveillance	•
for Enteric Fever (SEES)	•

March 2018 to June 2022

- Population-based: 794
- School-based: 1363

Campaign

November 2019

Routine Immun

January 2020

3. (SEAP) Phase II & III, and ITRIPP study

January 2017 to September 2023

- Total cases tested : 61,936
- XDR-positive: 35,543

Extracting Geospatial information from Hospital and Lab Data

Hospitals

- Aga Khan University Hospital
- Liaquat University of Medical and Health Science Hospital, Hyderabad
- Aga Khan Maternal and Childcare Center **AKMCCC, AKU**
- Children's hospital and Institute of Child Health ٠
- Shifa International Hospital ٠
- Qasimabad Hospital, Hyderabad ٠
- Bhittai Hospital, Hyderabad ٠
- Kharadar General Hospital ٠
- National Institute of Child Health
- Jinnah Postgraduate Medical center ٠

Labs

- Aga Khan University Lab network allover Pakistan
- Liaquat University of Medical and Health Science (LUMHS) Laboratory Network
- **Chughtai Lab Network**
- Shaukat Khanum Hospital Laboratory Network

October 2020 to September 2023

Sindh Cities	XDR Cases
Karachi	6533
Hyderabad	4342
Jamshoro	462
Larkana	498
Dadu	158
Sanghar	180
Nawabshah	158
Mirpur Khas	289
Thatta	29
Sukkur	149
Qambar Shahdadkot	65
Tando Allahyar	45
Tando Muhammad Khan	99
	55
Punjab Cities	XDR Cases
Punjab Cities	XDR Cases
Punjab Cities Lahore	XDR Cases 1010
Punjab Cities Lahore Faisalabad	XDR Cases 1010 108
Punjab CitiesLahoreFaisalabadGujranwala	XDR Cases 1010 108 41
Punjab CitiesLahoreFaisalabadGujranwalaMultan	XDR Cases 1010 108 41 67
Punjab CitiesLahoreFaisalabadGujranwalaMultanRawalpindi	XDR Cases 1010 108 41 67 34
Punjab CitiesLahoreFaisalabadGujranwalaMultanRawalpindiSargodha	XDR Cases 1010 108 41 67 34 41
Punjab CitiesLahoreFaisalabadGujranwalaMultanRawalpindiSargodhaSheikhupura	XDR Cases 1010 108 41 67 34 41 108
Punjab CitiesLahoreFaisalabadGujranwalaMultanRawalpindiSargodhaSheikhupuraBahawalnagar	XDR Cases 1010 108 41 67 34 41 108 41
Punjab CitiesLahoreFaisalabadGujranwalaMultanRawalpindiSargodhaSheikhupuraBahawalnagarBahawalpur	XDR Cases 1010 108 41 67 34 41 108 41 108 1108 14

Sindh Cities	Density over 100,000 people
Hyderabad	197
Karachi	41
Jamshoro	47
Larkana	33
Mirpur Khas	19
Sukkur	10
Qambar Shahdadkot	5
Sujawal	2
Tando Allahyar	5
Tando Muhammad Khan	16
Punjab Cities	Density over 100,000 people
Lahore	9
Faisalabad	1
Gujranwala	1
Multan	1
Rawalpindi	1
Sheikhupura	3
Chiniot	1

	XDR
Karachi Districts	Cases
Karachi South	1918
Karachi East	1426
Karachi Central	1221
Karachi West	722
Malir	619
Karachi	
Cantonment	258
Kemari	202
Korangi	167

25°

Karachi Districts	Population	Cases per 100,000 people
Karachi South	1,416,936	135
Karachi East	2,610,998	55
Karachi West	1,560,284	46
Karachi Central	2,971,626	41
Malir	1,812,104	34
Karachi		
Cantonment	873,955	30
Kemari	2,348,599	9
Korangi	2,457,019	7

25°

XDR-Typhoid Cases in Karachi (Density over Population)

67°10'

Number of XDR-positive Cases Seasonality Maps

April - June

April - June

April - June

2019

April - June

April - June

2021

April - June

Conclusions

- Hyderabad had the highest clinical (blood culture) incidence and seroincidence
- Serosurveillance is a strategy to efficiently fill in the gaps in areas where blood culture is not available
- In Lyari, where we had both population-based and school-based serosurveys, seroincidence estimates were comparable

Acknowledgements

Dr. Farah Qamar Study and field team

Parents and families

GIS team Syeda Aliya Hassan Ayub Khan

BILL& MELINDA GATES foundation

Seroincidence of Enteric Fever based on Targeted Serosurveillance in Blantyre, Malawi

Jonathan Mandolo(PhD student)

Liverpool school of Tropical Medicine Malawi Liverpool Wellcome Programme

Study Design

- This was a cross sectional study in Ndirande, Blantyre , Malawi
 between Dec 2022 to June 2023
- The target was to recruit 1300 individuals of 1 to 14 years based on adjusted clinical incidence
- Recruited 966 of age groups 1-2 and 3-4, 5-9, 10-14 years

Laboratory Methods

Created with BioRender.com, Aiemjoy et al, BPLoS Negl Trop Dis., 2020

• Antibody dynamics from a longitudinal cohort of 1,420 blood

culture-confirmed enteric fever cases in Nepal, Ghana,

Bangladesh, Pakistan were used

• Age- stratified incidence rates were estimated using the agespecific antibody response parameters

Aiemjoy et al, BPLoS Negl Trop Dis., 2020

Participants demographic characteristics

Characteristic	Category	Value, N = 966 (%)
Age, y, median (IQR)		6 (3 -11)
Age group	1 to 2 years	183 (18.94)
	3 to 4 years	204 (21.12)
	5 to 9 years	287 (29.71)
	10 to 14 years	292 (30.23)
Sex	Female	476 (49.28)
	Male	490 (50.72)

HlyE IgG ELISA units by Demographic Characteristics

Increase in HlyE IgG levels by age suggesting hyperendemicity

Seroincidence by demographic characteristics

Infection & Immunity Group

Higher force of infection in younger Children

A

Case-based incidence vs Seroincidence

Higher Seroincidence rate than clinical-incidence rate in Urban Malawi

(Feasey et al. unpublished)

Malawi Seroincidence vs other Countries

Infection & Immunity Group

courtesy of Assoc Prof Richelle Charles

Higher Salmonella typhi Seroincidence rate than clinical

incidence estimates in Urban Malawi

- Malawi amongst the high Enteric fever burden countries
- The approach has a potential to expand the geographical scope of typhoidal Salmonella surveillance and generate incidence

estimates in Malawi

Way Forward

TANZANIA

MOZAMBIQUE

Nkhata Bay

Nkhotakot

Chizumulu OD Likoma

Souther Mangochi

Malomb

Zomba Chiradzu

Analyse samples from other sites of Rumphi Northern Malawi to have a ZAMBIA **Azimba** proper national burden of Enteric Kasungu fever Ntchisi Central Dowa MOZAMBIQUE

Acknowledgements

Supervisors

Assoc Prof Kondwani Jambo Dr Khuzwayo Jere

Collaborators

Assoc Prof Richelle Charles

Dr Kristen Aiemjoy

Malawi Liverpool Welcome Programme

UNIVERSITY OF LIVERPOOL

Memory Mvula Fatima Mtonga Prof Nicholas Feasey Dr Armelle Forrer Professor Melita Gordon Infection and Immunity Group SEROSURV study participants

BILL& MELINDA GATES foundation

The Centre for Global Vaccine Research