

Longer-term efficacy of typhoid conjugate vaccine in Malawi

Dr. Priyanka D. Patel Malawi Liverpool Wellcome Programme 13th International Conference on Typhoid & Other Invasive Salmonelloses

Typhoid cases - Malawi

High incidence of MDR typhoid 2016-2019 (STRATAA) *444/100,000 PYO

*Meiring et al, Lancet 2021

TyVAC trial of TCV: Study design and objectives

*Sub-study of 600 age-stratified children.

Primary objective

- Vaccine efficacy: Blood-culture confirmed typhoid incidence, TCV vs MenA
- 48-month final analysis: Data lock Sept 30, 2022

Secondary and exploratory objectives

- Safety, tolerability, and immunogenicity
- Durability, age-band efficacy

* Protocol: Meiring et al, *Clin Infect Dis* 2019.*Safety & immuno: Nampota et al, *Lancet GH* 2023.

Consort diagram

Typhoid vaccine trial results @18-24 months

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Safety and Efficacy of a Typhoid Conjugate Vaccine in Malawian Children

Priyanka D. Patel, M.B., B.S., Pratiksha Patel, M.B., B.S., Yuanyuan Liang, Ph.D., James E. Meiring, Ph.D., Theresa Misiri, M.P.H., Felistas Mwakiseghile, M.Sc., J. Kathleen Tracy, Ph.D., Clemens Masesa, M.Sc., Harrison Msuku, B.Sc., David Banda, B.Sc., Maurice Mbewe, B.Sc., Marc Henrion, Ph.D., Fiyinfolu Adetunji, M.P.H., Kenneth Simiyu, Ph.D., Elizabeth Rotrosen, A.B., Megan Birkhold, M.D., Nginache Nampota, M.B., B.S., Osward M. Nyirenda, B.Sc., Karen Kotloff, M.D., Markus Gmeiner, M.Sc., Queen Dube, Ph.D., Gift Kawalazira, M.B., B.S., Matthew B. Laurens, M.D., Robert S. Heyderman, Ph.D., Melita A. Gordon, M.D., and Kathleen M. Neuzil, M.D., for the TyVAC Malawi Team

N ENGL J MED 385;12 NEJM.ORG SEPTEMBER 16, 2021

** Patel et al, NEJM 2021 (Malawi).
*Immuno & safety: Nampota et al, Lancet GH 2023.

*Safe & immunogenic

**80.7% efficacious @ 18-24 months

*Co-administration (Measles Rubella)

Durability of protection

Efficacy in youngest children

Passive surveillance data, 48-month analysis

Enhanced passive surveillance for typhoid	Count		
Screened passive surveillance visits	39,174		
Eligible (T>=38° or 3 days reported fever)	10,777		
Blood cultures collected (96% of fever)	10,136		
Typhoid cases (1.3% of cultures)	136		
*SAEs (all deemed unrelated to vaccine)	554		
Deaths (one typhoid death (MenA group)	34		

Map of Blantyre showing vaccine coverage (orange dots) and typhoid cases (blue dots) among vaccinated children.

Blood cultures and typhoid cases over time

*Final ITT analysis – 48-52 months follow-up

28,130 children	TCV	MenA
9 months – 12 years	n=14,069	n=14,061
Follow-up time person-years	60,500	60,220
Typhoid cases culture positive	24	110
Incidence	39.7	182.7
/100,000 pyo (95%Cl)	(25.4 <i>,</i> 59)	(150.1, 220.2)

Vaccine Efficacy: 78.3% (95% CI: 66.3% - 86.1%) No. Needed to Vaccinate: 163 (95% CI: 129 - 222)

*Patel P, Liang et al, Lancet 2023 (in press). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4411421.

TYPHOID VACCINE ACCELERATION CONSORTIUM

Kaplan Meier for ITT population

110 typhoid cases in MenA arm

Maximum number at risk

0.010

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

0

.5

1

Cumulative Incidence

2

1.5

2.5

Years since Vaccination

p<0.001

3.5

3

4.5

4

Meta-regression of vaccine efficacy over 5 annual intervals

Vaccine efficacy estimated to **fall by 1.3% per annum**

Weights: Inverse-variance

Efficacy by age at vaccination

	2y		0-0-0 2y - <5y		0-0-0 5y – 12y	
	TCV	MenA	TCV	MenA	TCV	MenA
No. participants	1555	1600	3503	3579	9011	8882
Typhoid cases	4	14	5	25	15	71
Incidence (per 100,000 PYO)	60.7 (22.8, 161.8)	206.7 (122.4, 349.0)	33.3 (13.9, 80.1)	163.4 (110.4, 241.9)	38.6 (23.2, 64.0)	186.1 (147.5 <i>,</i> 234.8)
Vaccine efficacv	70.6% [6.4%, 93%]		79.6% [45	.8%, 93.9%]	79.3% [6 3	8.5%, 89.0%]

Conclusion

*Patel P , Liang et al, 2023. Available as Lancet pre-print 2023. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4411421. Safe & immunogenic

78.3% efficacious @ 4+ years

Co-administration (MR)

*Durability of protection

*Efficacy in youngest children

National TCV roll out - History made in Malawi

itel shot on as

Challenges

- Infrastructure damage (Cyclone Freddy)
- Vaccinator fatigue(COVID, cholera, polio)
- Community fatigue

MITIMA <u>Measuring the Effectiveness and Impact of TCV</u> Introduction in <u>Ma</u>lawi

Aims:

Effectiveness – case control study, test-negative design.

Impact – ecological, proportionate reduction in typhoid incidence before and after.

The Typhoid Vaccine Acceleration Consortium (TyVAC) is led by the Center for Vaccine Development and Global Health at the University of Maryland School of Medicine, the Oxford Vaccine Group at the University of Oxford, and PATH. TyVAC is funded by the Bill & Melinda Gates Foundation.

TyVAC works closely with global partners

CENTERS FOR DISEASE CONTROL AND PREVENTION

Acknowledgements

Study participants and their communities

MLW TyVAC teams MLW core support

Kathy Neuzil & UMB TyVAC team

Funded by: BILL& MELINDA GATES foundation

TYPHOID VACCINE ACCELERATION CONSORTIUM

Supplementary