National Center for Emerging and Zoonotic Infectious Diseases

Environmental Surveillance for Typhoid in Kibera, an Informal Settlement in Nairobi, Kenya

Jennifer L. Murphy, PhD, WASH Laboratory Team Lead, Environmental Microbiologist Jennifer Verani, MD, MPH, Medical Epidemiologist

Environmental Surveillance for *Salmonella* and Antimicrobial Resistance Genes (AMR) Symposium

March 26, 2019

Kibera, Nairobi, Kenya

- Large urban informal settlement in Nairobi, Kenya
 - Densely populated
 - Inadequate sanitation
 - Water primarily obtained from vendors with unregulated connections to municipal water pipes

Typhoid fever in Kibera

- Population-based infectious disease surveillance (PBIDS) showed high burden of typhoid fever 03/2007- 02/2009
 - Crude incidence 247/100,000 person-years (pyo)
 - Adjusted 822/100,000 pyo
 - In aged 2-4 years 2,243/100,000 pyo
- Higher risk of disease in lower elevation
 - Among children <10 years

Decline in typhoid fever in Kibera

- In 2013, incidence reduced by ~80%
 - Has remained at low levels
- Reasons for decline unclear
 - Improved water/sanitation? Population dynamics? Shift in strains?

Kibera Typhoid Project

- Aimed at understanding decline in typhoid fever
- Strengthened surveillance
 - Optimize detection of typhoid fever cases
 - Water/sanitation data collected from participating households
- Whole genome sequencing of blood isolates from typhoid fever cases
- Environmental surveillance for Salmonella
 - Drinking water and sewage
- Statistical and mathematical modeling

Kibera Typhoid Project

- Aimed at understanding decline in typhoid fever
- Strengthened surveillance
 - Optimize detection of typhoid fever cases
 - Water/sanitation data collected from participating households
- Whole genome sequencing of blood isolates from typhoid fever cases
- Environmental surveillance for Salmonella
 - Drinking water and sewage
- Statistical and mathematical modeling

- Gain insight in potential environmental exposure pathways
- Geographic elevation
- Comparison with case patient strains
- Develop tools for environmental monitoring
- High genomic resolution for trace back to clinical cases
- Identifying and assessing rapid remediation strategies

- 4 Major Objectives
 - 1. Collect samples from sewage-impacted drainage streams and drinking water in both low and high elevation areas in Kibera and use both culture-based and molecular-based methods to detect *S.* Typhi.

- 4 Major Objectives
 - 1. Collect samples from sewage-impacted drainage streams and drinking water in both low and high elevation areas in Kibera and use both culture-based and molecular-based methods to detect *S.* Typhi.
 - 2. Measure select microbiological and physicochemical parameters, including fecal indicator bacteria, turbidity, pH, temperature, conductivity, and chlorine.

- 4 Major Objectives
 - 1. Collect samples from sewage-impacted drainage streams and drinking water in both low and high elevation areas in Kibera and use both culture-based and molecular-based methods to detect *S.* Typhi.
 - 2. Measure select microbiological and physicochemical parameters, including fecal indicator bacteria, turbidity, pH, temperature, conductivity, and chlorine.
 - 3. Perform molecular-based analysis of DNA obtained from environmental samples and compare DNA obtained from both patient cases and environmental samples.

- 4 Major Objectives
 - 1. Collect samples from sewage-impacted drainage streams and drinking water in both low and high elevation areas in Kibera and use both culture-based and molecular-based methods to detect *S.* Typhi.
 - 2. Measure select microbiological and physicochemical parameters, including fecal indicator bacteria, turbidity, pH, temperature, conductivity, and chlorine.
 - 3. Perform molecular-based analysis of DNA obtained from environmental samples and compare DNA obtained from both patient cases and environmental samples.
 - 4. Develop and refine new molecular diagnostic tools for detecting low-concentration pathogens directly from environmental samples.

Sampling

 Collect samples from in both low (n=3) and high (n=1) elevation sites in Kibera 6 times from November 2017 – December 2018

Open drainage stream

Vended drinking water

Sampling

- Large-volume water samples, in triplicate, via dead-end ultrafiltration (DEUF)
 - Drainage stream: 10 L(or until clogging occurs)
 - Drinking water: 20 L

Sampling

- Large-volume water samples, in triplicate, via dead-end ultrafiltration (DEUF)
 - Drainage stream: 10 L(or until clogging occurs)
 - Drinking water: 20 L
- Small-volume water samples, in duplicate, for additional water quality parameters

Sample Processing

- In the Kibera laboratory:
 - Ultrafilter backflush → EPA culture method
 - Universal pre-enrichment (UPE) broth
 - Selenite cysteine (SC) broth
 - Bismuth sulfite (BS) agar and xylose lysine deoxycholate (XLD) agar

Sample Processing

- In the Kibera laboratory:
 - Ultrafilter backflush → EPA culture method
 - Universal pre-enrichment (UPE) broth
 - Selenite cysteine (SC) broth*
 - Bismuth sulfite (BS) agar and xylose lysine deoxycholate (XLD) agar
 - Grab samples
 - IDEXX Colilert-18 for *E. coli*
 - IDEXX Enterolert for Enterococci

Photo: idexx.co.au

Sample Preservation

Sample Preservation

- Universal nucleic acid extraction (UNEX) buffer at ambient temperature
- Tryptic soy broth with 15% glycerol (TSB-G) at -20 °C

Physicochemical Results

Table 1: Median (range) physicochemical water quality measures

	Drainage Water (n=24)	Drinking Water (n=24)
Turbidity (NTU)	673.5 (12.6 - >1000)	0.9 (0.5 - 8.6)
рН	7.8 (6.5 - 8.6)	8.1 (6.5 - 8.6)
Temperature (°C)	21.8 (19.1 - 25.8)	21.8 (17.6 - 26.5)
Conductivity (μS/cm)	1005 (236 - 17800)	97.9 (79.9 - 280.0)
Free chlorine residual (mg/L)	n/a	0.17 (<0.02 - 0.52)

NTU: Nephelometric Turbidity Units

Physicochemical Results

Table 1: Median (range) physicochemical quality measures

	Drainage Water (n=24)	Drinking Water (n=24)
Turbidity (NTU)	673.5 (12.6 - >1000)	0.9 (0.5 - 8.6)
рН	7.8 (6.5 - 8.6)	8.1 (6.5 - 8.6)
Temperature (°C)	21.8 (19.1 - 25.8)	21.8 (17.6 - 26.5)
Conductivity (μS/cm)	1005 (236 - 17800)	97.9 (79.9 - 280.0)
Free chlorine residual (mg/L)	n/a	0.17 (<0.02 - 0.52)

NTU: Nephelometric Turbidity Units

Fecal Indicator Bacteria Results

Table 2: Fecal indicator bacteria measures

Samples *E. coli*-positive* (range, MPN/100 mL)

Samples Enterococci-positive* (range, MPN/100 mL)

Drainage Water (n=24)	Drinking Water (n=24)
24 (10 ⁵ - 10 ⁹)	5 (<1.0 - 33.6)
24 (10 ⁵ - 10 ⁷)	2 (<1.0 - 1.0)

^{*}at least 1 of 2 replicates positive

 CDC Environmental Microbiology (EM) laboratory currently uses a modified version of the CDC Enterics Laboratory's S. Typhi assay for isolates

	fimA (Salmonella spp)	<i>fli</i> C-d	viαB	tyv
Salmonella Typhi	+	+	+	+
Salmonella Paratyphi A	+	-	-	-
Salmonella Enteritidis	+	-	-	+
Salmonella Typhimurium	+	-	-	-

(+) real time PCR positive (-) real time PCR negative

 CDC Environmental Microbiology (EM) laboratory currently uses a modified version of the CDC Enterics Laboratory's S. Typhi assay for isolates

	fimA (Salmonella spp)	<i>fli</i> C-d	viaB	tyv
Salmonella Typhi	+	+	+	+
Salmonella Paratyphi A	+	-	-	-
Salmonella Enteritidis	+	-	-	+
Salmonella Typhimurium	+	-	-	-
(+) real time PCR positive (-) real time PCR negative				

- Presumptive-positive isolates from 83% (60 of 72) of drainage samples
 - Isolates from 90% (26 of 29) of samples tested to-date are PCR-positive for Salmonella spp. (fimA)

 CDC Environmental Microbiology (EM) laboratory currently uses a modified version of the CDC Enterics Laboratory's S. Typhi assay for isolates

	fimA (Salmonella spp)	<i>fli</i> C-d	viaB	tyv
Salmonella Typhi	+	+	+	+
Salmonella Paratyphi A	+	-	-	-
Salmonella Enteritidis	+	-	-	+
Salmonella Typhimurium	+	-	-	-
(+) real time PCR positive (-) real time PCR negative				

- Presumptive-positive isolates from 83% (60 of 72) of drainage samples
- Isolates from 90% (26 of 29) of samples tested to-date are PCR-positive for Salmonella spp. (fimA)
- No isolates tested to-date are PCR-positive for S. Typhi

 CDC Environmental Microbiology (EM) laboratory currently uses a modified version of the CDC Enterics Laboratory's S. Typhi assay for isolates

	fimA (Salmonella spp)	<i>fli</i> C-d	viaB	tyv
Salmonella Typhi	+	+	+	+
Salmonella Paratyphi A	+	-	-	-
Salmonella Enteritidis	+	-	-	+
Salmonella Typhimurium	+	-	-	-
(1)				

(+) real time PCR positive (-) real time PCR negative

- Presumptive-positive isolates from 60 (83%) of 72 drainage samples
 - Isolates from 26 (90%) of 29 samples tested to-date are PCR-positive for Salmonella spp. (fimA)
 - No isolates tested to-date are PCR-positive for S. Typhi
- Presumptive-positive colonies isolated from 15% (11 of 72) drinking water samples

Murphy et al. Appl Environ Microbiol 2017;83(23)e01706-17.

- S. Typhi is challenging to isolate from the environment
 - Dilution, competition in the culture process, viable but non-culturable state (VBNC)

- S. Typhi is challenging to isolate from the environment
 - Dilution, competition in the culture process, viable but non-culturable state (VBNC)
- Real time PCR screening → more accurate representation
 - Selective enrichments reduce competition and increase target

- S. Typhi is challenging to isolate from the environment
 - Dilution, competition in the culture process, viable but non-culturable state (VBNC)
- Real time PCR screening → more accurate representation
 - Selective enrichments reduce competition and increase target
- PCR assays developed for clinical samples provide a good starting point for environmental assay development

- S. Typhi is challenging to isolate from the environment
 - Dilution, competition in the culture process, viable but non-culturable state (VBNC)
- Real time PCR screening → more accurate representation
 - Selective enrichments reduce competition and increase target
- PCR assays developed for clinical samples provide a good starting point for environmental assay development
- However, infected clinical specimens differ considerably from environmental samples
 - Are relatively "clean" (e.g., blood) or well-characterized (e.g., stool) matrices
 - Have high concentration of target nucleic acids
 - Rarely have multiple species or serotypes of the same pathogen

Challenges with complex environmental samples

- Challenges with complex environmental samples
 - Every sample matrix is unique (location, time of day, season)

- Challenges with complex environmental samples
 - Every sample matrix is unique (location, time of day, season)
 - Large quantities of substances that can physically inhibit amplification of target nucleic acids (false negatives)

- Challenges with complex environmental samples
 - Every sample matrix is unique (location, time of day, season)
 - Large quantities of substances that can physically inhibit amplification of target nucleic acids (false negatives)
 - Inorganics and organics that can impact PCR chemistry (false negatives)

- Challenges with complex environmental samples
 - Every sample matrix is unique (location, time of day, season)
 - Large quantities of substances that can physically inhibit amplification of target nucleic acids (false negatives)
 - Inorganics and organics that can impact PCR chemistry (false negatives)
 - Low concentration of target nucleic acids relative to background (false negatives)

- Challenges with complex environmental samples
 - Every sample matrix is unique (location, time of day, season)
 - Large quantities of substances that can physically inhibit amplification of target nucleic acids (false negatives)
 - Inorganics and organics that can impact PCR chemistry (false negatives)
 - Low concentration of target nucleic acids relative to background (false negatives)
 - Presence of organisms that are genetically closely related (false positives)

- Challenges with complex environmental samples
 - Every sample matrix is unique (location, time of day, season)
 - Large quantities of substances that can physically inhibit amplification of target nucleic acids (false negatives)
 - Inorganics and organics that can impact PCR chemistry (false negatives)
 - Low concentration of target nucleic acids relative to background (false negatives)
 - Presence of organisms that are genetically closely related (false positives)
 - Vast array of uncharacterized nucleic acids that may be amplified (false positives)

Environmental Sample PCR Assay Development

- Challenges with complex environmental samples
 - Every sample matrix is unique (location, time of day, season)
 - Large quantities of substances that can physically inhibit amplification of target nucleic acids (false negatives)
 - Inorganics and organics that can impact PCR chemistry (false negatives)
 - Low concentration of target nucleic acids relative to background (false negatives)
 - Presence of organisms that are genetically closely related (false positives)
 - Vast array of uncharacterized nucleic acids that may be amplified (false positives)
 - Compounded when assays are multiplexed
 - Primer interactions
 - Relative abundance of targets per cell and across closely-related organisms
 - Competition for reagents within the reaction

Environmental Sample PCR Assay Development

- Ideal environmental PCR assay
 - Singleplex
 - Sensitive and specific within known genomic databases
 - Thoroughly vetted via performance testing in relevant environmental samples

Environmental Sample PCR Assay Development

	fimA (Salmonella spp)	<i>fli</i> C-d	viaB	tyv
Salmonella Typhi	+	+	+	+
Salmonella Paratyphi A	+	-	-	-
Salmonella Enteritidis	+	-	-	+
Salmonella Typhimurium	+	-	-	-

(+) real time PCR positive (-) real time PCR negative

Not ideal for environmental samples

- Other environmental microorganisms may carry one or more of these genes
- Relative abundance of different genes in complex matrix can affect interpretation of non-detects

S. Typhi PCR Assay for Environmental Samples

- Started with effective clinical singleplex S. Typhi method
- Created photo-induced electron transfer (PET) PCR assay
 - Designed for use in malaria control and elimination programs
 - Self-quenching fluorogenic primers (no internal probes or dyes)
 - Less expensive, less complex
 - Potential for use large scale screening in surveillance and epidemiological

studies

Lucchi et al. PLoS One 2013. 8(2):e56677

S. Typhi PCR Assay for Environmental Samples

■ Modified Nga primers → PET PCR primers

Target region: STY0201 from S. Typhi, encoding a putative fimbrial-like adhesin protein located in the S. Typhi CT18 chromosome genome sequence

- In silico analysis of PET PCR target "ST1"
 - CDC clinical S. Typhi genomes
 - CDC S. enterica subsp. enterica genomes
 - All NCBI bacteria
 - CDC curated human stool database of 330 bacterial genome sequences

Nga et al. BMC Infect Dis 2010;10:125.

Performance Testing in Environmental Samples

4 Kibera drainage enrichments seeded with S. Typhi (91 CFU / PCR reaction)

Seeded Study Results

Table: PET PCR Threshold cycle (Ct) for ST1, unseeded and seeded Kibera enrichments

Campla	ST1 Ct					
Sample	Un	Seeded				
1	39.4	37.0				
2	36.4	36.1				
3	39.6	39.6				
4	39.0	36.3				
dH ₂ O	n/a	36.1				

- Inhibition apparent in 1 sample (#3)
- ST1 detected in all 4 unseeded enrichments

Seeded Study Results

Table: PET PCR Threshold cycle (Ct) for ST1 and four target assay, unseeded and seeded Kibera enrichments

Sample	ST1 Ct		fimA Ct		tyv Ct		viaB Ct		<i>fli</i> C-d Ct	
	Un	Seeded	Un	Seeded	Un	Seeded	Un	Seeded	Un	Seeded
1	39.4	37.0	+	+	+	+	1	+	+	+
2	36.4	36.1	+	+	+	+	+	+	+	+
3	39.6	39.6	+	+	1	+	+	+	+	+
4	39.0	36.3	+	+	1	+	+	+	+	+
dH ₂ O	n/a	36.1	n/a	+	n/a	+	n/a	+	n/a	+

■ Enrichment 2 is also positive for each of the four additional assays → likely S. Typhi; sequence confirmation needed

Seeded Study Results

Table: PET PCR Threshold cycle (Ct) for ST1 and four target assay, unseeded and seeded Kibera enrichments

Sample	ST1 Ct		fimA Ct		tyv Ct		viaB Ct		<i>fli</i> C-d Ct	
	Un	Seeded	Un	Seeded	Un	Seeded	Un	Seeded	Un	Seeded
1	39.4	37.0	+	+	+	+	1	+	+	+
2	36.4	36.1	+	+	+	+	+	+	+	+
3	39.6	39.6	+	+	1	+	+	+	+	+
4	39.0	36.3	+	+	1	+	+	+	+	+
dH ₂ O	n/a	36.1	n/a	+	n/a	+	n/a	+	n/a	+

- Enrichment 2 is also positive for each of the four additional assays → likely S. Typhi; sequence confirmation needed
- Enrichments 1, 3, and 4: unclear (detection limit: 40 cycles)

Complete analyses of presumptive positive isolates

- Complete analyses of presumptive positive isolates
- Continue optimization for PET PCR:
 - Wet lab confirmation of in silico sensitivity and specificity
 - Limitation: ST1 is a short target ≠ sequencing

- Complete analyses of presumptive positive isolates
- Continue optimization for PET PCR:
 - Wet lab confirmation of in silico sensitivity and specificity
 - Limitation: ST1 is a short target ≠ sequencing
 - "ST2" appears to be highly sensitive and specific
 - Sequence longer amplicon for sequence confirmation

 Continue S. Typhi screening of unenriched and enriched water concentrates with sequence confirmation to identify optimal surveillance sample processing methods

- Continue S. Typhi screening of unenriched and enriched water concentrates with sequence confirmation to identify optimal surveillance sample processing methods
- Additional funding for environmental surveillance design method development:
 - Geographical representative sampling sites (e.g., high vs low elevation)
 - Person-denominator for each sample directing public health action

Acknowledgments

- KEMRI
 - Liz Hunsperger
 - Loicer Achieng
 - Wyclife Mwika
 - Godfrey Bigogo
 - Juma Bonventure
 - Geofrey Masyongo
 - Newton Wamola
 - Alice Ouma
 - Patrick Munywoki

- CDC Atlanta
 - Tricia Akers
 - Travis Brown
 - Jothikumar Narayanan
 - Mia Mattioli
 - Amy Kirby
 - Ana Lauer
 - Jo Williams
 - Sean Lucking
 - Patti Fields
 - Heather Carleton
 - Matt Mikoleit

- CDC Kenya
- Institute for Disease Modeling
- Bill and Melinda Gates Foundation
- Henry Jackson Foundation

Thank you!

Questions?

For more information, contact CDC 1-800-CDC-INFO (232-4636)
TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

