Method optimisation for detection of *Salmonella* Typhi from the environment

Jonathan Rigby, Liverpool School of Tropical Medicine
Malawi background & rationale

Malawi is an typhoid endemic country
- Outbreak of unknown origin in Blantyre, Malawi started 2012
- >16,000 cases per year, ~200 deaths associated with typhoid

Methods Development Project
Primary aim: culture & detect S. Typhi from the environment

Figure 1: Feasey et al., 2015, Monthly trends in bloodstream invasive Salmonella diagnosed at QECH from November 2010-October 2014.
Isolation of *Salmonella* Typhi from the environment is difficult but not impossible

Sampling from sewerage proved effective

- **≤1950s**
 - Moore’s swabs
 - Specific required culture methods

- **1980s**
 - Reinforced the use of Moore’s swabs
 - Selenite-F is the most effective for *S. Typhi*

- **Viable but non-culturable (VBNC)**

New approaches use molecular methods

- Strongly associated with water & indirect transmission in endemic regions

Culture remains important

Figure 1: Electron micrograph of a salmonella taken by Matthew Hannah, PHE
Twenty isolates from the PHE culture collection were used

Isolates from different regions selected for laboratory testing

The use of a novel chromogenic agar, mCASE was selected for the isolation of salmonella

Figure 2: Global distribution of strains used in optimisation & evaluation of environmental isolation (Satheesh Nair, PHE)

Figure 3: Pure S. Typhi on mCASE
Methods for the isolation of *Salmonella* Typhi were assessed

![Diagram showing the steps for isolation]

- **Pathways were narrowed to four options from original 15**
 - Selenite cysteine broth was preferred due to its selectivity but does not remove *S. Typhi* like alternatives (e.g. Rappaport Vassiliadis broth)
 - Bile broth: infection starts post exposure to bile
Too Many Plates

Preliminary working at PHE Food, Water & Environmental Laboratory

- Hundreds of plates a week processed
 - Under laboratory conditions with control strains, S. Typhi was reliably retrieved
 - Environmental testing required

Photo Credit: https://www.flickr.com/photos/erikaleef
Following narrowing of the pathways, challenges set up with blind, mixed cultures

Challenge Organisms
- *Salmonella* Nottingham – same colour as *S. Typhi* on mCASE
- *Bacillus cereus* – similar colour & overgrows
- Fungi - blind cultures grew relatively well in the broths

Immuno-magnetic bead separation ran in parallel
- Pan-*Salmonella* bead, developed by Ezzeddine Elmerhebi, Neogen LabM
- Further work required *in situ* as artificial mixtures showed no major difference in recovery rates

Figure 5: Mixed culture on mCASE, where S. Typhi was successfully selected
Molecular approaches utilised to reinforce culture methods developed

• The main aim of the project is to develop a method for culturing environmental *S. Typhi*

• Molecular methods are more cost effective & high-throughput

• Quantitative PCR also allows for screening of incoming samples
 - Inhibitors such as environmental, chemical & faecal contaminants

Figure 6: Pathway emphasising confirmation step

Note: Current DNA-based molecular methods cannot prove viability
Novel assay from PHE used for rapid diagnostics

Satheesh Nair, PHE, designed an assay for diagnostics
- The original assay included primer’s for Paratyphi A, B & C
- This project aims to multiplex the S. Typhi targets
- Multiplexed assay is currently being optimised
- Probes changed from original to minimise interference in multiplex

Table 1: Primer sequences of PHE assay and source publications

<table>
<thead>
<tr>
<th>Gene</th>
<th>Name</th>
<th>Sequence 5’-3’</th>
<th>NCBI Accession Number</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttr</td>
<td>ttr_F</td>
<td>CTCACCAGGAGATTACAACATGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ttr_R</td>
<td>AGCTCAGACCAAAGTGACCATC</td>
<td>AF282268</td>
<td>Hopkins, 2009</td>
</tr>
<tr>
<td></td>
<td>ttr_P</td>
<td>FAM-CACCGACGGCGAGACGGACTTT-BHQ1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sseJ</td>
<td>sseJ_F</td>
<td>CGAGACTGCGATGCATTTA</td>
<td>AF294582</td>
<td>Nair, 2019</td>
</tr>
<tr>
<td></td>
<td>sseJ_R</td>
<td>GTACATAGCCGTTGAGTATAAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sseJ_P</td>
<td>YY-TGGAGGCAGGCGACGATTGT-BHQ1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tviB</td>
<td>tviB_F</td>
<td>TGTGGTAAAGGAACTCGGTAAA</td>
<td>NC_003198</td>
<td>Nair, 2004</td>
</tr>
<tr>
<td></td>
<td>tviB_R</td>
<td>GACTTCCGATGCCGTTGAGTATAATG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tviB_P</td>
<td>CY3-TGGATGCCGAGAGTGTAGAAGACGGAG-BHQ2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>staG</td>
<td>staG_F</td>
<td>CGCGAAGTCAGAGTGACATAG</td>
<td>AL513382</td>
<td>Nga, 2010</td>
</tr>
<tr>
<td></td>
<td>staG_R</td>
<td>AAGACCTCAACGCCGATCAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>staG_P</td>
<td>CY5-CATTGTTTCTGGAGACGCGTACGG-BHQ2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
High-Resolution Melt (HRM) PCR

The multiplex assay is being adapted to HRM

- Thomas Edwards, LSTM, consulted in assay conversion
 - Results consistent with S. Typhi & non-typhoidal salmonella control strains
 - Further optimisation & design changes

Figure 7: HRM melt curves for positive Salmonella Typhi
Role of the assay

As a tool for screening & confirmation, the blind cultures were processed with both the probe based q-PCR & the HRM PCR

HRM: <£0.40 (<$0.5)
Probe: <£0.50 (<$0.6)
Moving forwards, work to be done in Malawi

Final Culture Pathways

- Limit of detection (LOD) & limit of quantification (LOQ) work still to be performed
- To finalise culture pathways based on further evaluation in Malawi
Moving forwards, work to be done in Malawi

Sampling strategy – in collaboration with Jillian Gauld, University of Lancaster
- Pilot Study
- Challenges
 - Road conditions & water access
 - Logistics

Methodology
- Continued optimisation
- Immuno-magnetic separation & microfluidics
- Adapt to new challenges from environmental samples

Figure 10: Cumulative map of Typhoid cases with highlighted sampling environmental areas
Figure 11: Examples of water access on the Likhubula River
Figure 12: Examples of water access on the Likhubula River and walkway through village
Figure 13: Examples of water access on the Lunzu River
Thuchila River

Figure 14: Examples of water access on the Thuchila River
knowledgements

Supervisors:
Dr Nicholas Feasey, LSTM
Dr Nicola Elviss, PHE
Dr Adam Roberts, LSTM

Collaborators:
Dr Satheesh Nair, PHE
Jillian Gauld, University of Lancaster
Dr Thomas Edwards, LSTM
Dr Ezzeddine Elmerhebi, Neogen LabM
Dr Hywel Morgan, University of Southampton
Dr Marie Chattaway, PHE