Strains of Salmonella associated with invasive disease

Nick Feasey
Enteric vs invasive lifestyles

- Diverse genomic repertoire supporting broad host range
- Genome degradation of so-called "generalist" genes
- Specific additional virulence genes

Genotype

Generalists

Salmonella Typhimurium

Salmonella Enteritidis

Host adapted

Salmonella Dublin

Salmonella Choleraesuis

Host restricted

Salmonella Typhi

Salmonella Gallinarum

Enteric/diarrhoeal disease

Invasive/systemic disease

Low mortality

High mortality

Feasey Lancet 2012
Paediatric iNTS disease in Africa: pre/early HIV era

Nigeria, 1970s
Alausa, Scand J Infect Dis

Kenya 1980s
Wamola, E Afr Med J

Gambia 1980s
Mabey, JID

DRC 1980s
Green, Ann Trop Paeds

Rwanda, 1980s
Le Page, Lancet
iNTS disease AIDS defining & NTS among most common cause of bloodstream infection in SSA

TABLE I - SEROLOGICAL MARKERS AND OPPORTUNISTIC INFECTIONS IN FIVE HETEROSEXUAL BLACK AFRICANS

<table>
<thead>
<tr>
<th>Virus antibody titres (inverse)</th>
<th>CMV</th>
<th>EBV</th>
<th>IGM</th>
<th>Opportunistic infections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+A. clytostomum apoplasticus;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Herpesvirus gordini;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Epstein-Barr viruses;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Escherichia coli;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shigella flexneri;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salmonella enteritidis;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salmonella paratyphi;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salmonella typhi;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salmonella typhosa;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Staphylococcus aureus;</td>
</tr>
</tbody>
</table>

North Africa
Two studies covering 14 locations
10 230 patients, 10-3% with BSI
HIV was not reported
All studies were primarily in adults
Three commonest isolates: Salmonella 49-9%
(Salmonella enterica va Typhi 99-0%),
Brucella spp 26-8%, Staphylococcus aureus 7-7%

East Africa
Seven studies covering nine locations
21 317 patients, 7-9% with BSI
18-5% of included patients tested for HIV
23-7% of 3445 tested were seropositive for HIV-1
Four studies were primarily in children and four were primarily in adults
Three commonest isolates: Streptococcus pneumoniae 21-2%
Salmonella 17-8% (non-typhoidal 88-0%),
Escherichia coli 9-5%

West and central Africa
Six studies covering five locations
5887 patients, 12-4% with BSI
5-4% of included patients tested for HIV
63-3% of 319 tested were seropositive for HIV-1 or HIV-2
Five studies were primarily in children and one was primarily in adults
Three commonest isolates: Salmonella 20-8% (non-typhoidal 87-0%),
S pneumoniae 18-9%, S aureus 17-2%

Southern Africa
Seven studies covering five locations
23 893 patients, 9-8% with BSI
5-0% of included patients tested for HIV
59-8% of 1204 tested were seropositive for HIV-1
Four studies were primarily in children and three were primarily in adults
Three commonest isolates: Salmonella 29-0%
(non-typhoidal 97-0%), S pneumoniae 24-0%,
S aureus 9-4%
S. Typhimurium associated with iNTS disease in sub-Saharan Africa have novel MLST: ST313

- Genomic degradation
 - Also seen in S. Typhi and other pathogens becoming host adapted
 - Similar genes to S. Typhi

- Novel Prophage repertoire

- MDR cassette in virulence plasmid
Phylogeny of S. Typhimurium reveals isolates from SSA fall into two highly related lineages.
Novel Prophages: Blantyre Type Prophage 1

S. Typhimurium D23580

A

Gene for O replication protein is a pseudogene preventing viable Gifsy-2
Pseudogene in tail assembly gene preventing viable ST64B
SNP in promoter of operon encoding the antirepressor affects function of Gifsy-1

Single nucleotide allelic exchange

Functional

Reversion of the SNP to P_{din-flos^{14028s}} restores activity of Gifsy-1¹⁰²²³⁵⁸⁰

B

D23580
D23580 P_{din-flos^{14028s}}

10⁻¹
Evidence of different behavior of ST313 and ST19

• ST313-td gene on BTP1 – (Herrero-Freson 2014, Owen 2017)
• ST313 stimulate less inflammasome activation than ST19 (Carden 2015)
• ST313 with naturally attenuated flagellin elicits reduced inflammation, replicates in macrophages (Ramachandran 2015)
• Loss of multicellular behavior in ST313 (Singletary 2016)
• Pseudogenization of the Secreted Effector Gene ssel Confers Rapid Systemic Dissemination (Carden 2017)
African S. Typhimurium is more invasive in chickens than global clades.
ST313 not restricted to SAA

- 79/2,888 UK S. Typhimurium in PHE collection are ST313
Lineage I & II isolates associated iNTS disease and travel to Africa

The remainder isolated from stool, prophage diversity, drug susceptible

Satheesh Nair
Public Health England

Ashton & Owen, Manuscript in preparation
African clades of S. Enteritidis

- Genomic degradation
- Novel Prophage repertoire
- MDR cassette in virulence plasmid
- Novel clades have highly conserved accessory genomes

Feasey Nat Gen 2016
Placed in context of PHE collection (~3,000 isolates), there is restriction to SSA
There’s a novel clade of S. Typhi too!

Emergence of H58 lineage

(Or subclade 4.3.1)

Wong et al Nat Gen 2015
Global dissemination of S. Typhi H58

Emerged ~30 years ago

Malawi
East Africa
South Africa
Western Asia
South Asia
South-East Asia

Fiji

Wong et al Nat Gen 2015
Extended spectrum beta-lactamase producing variants an emerging problem in invasive Salmonella disease

- bla$_{\text{CTX-M15}}$ first reported in S. Typhimurium in Malawi
- Same plasmid subsequently reported in Kenya
- 57% in rural west Kenya
- Emerging problem in S. Typhi
- Has potential to make invasive Salmonella disease untreatable in many settings
Summary

- Novel clades of MDR S. Typhimurium and S. Enteritidis are exploiting the high prevalence of immunosuppressive conditions to cause epidemics of iNTS disease
 - More invasive?
 - Less invasive?
 - Niche adaptation to particular environmental reservoir?

- MDR H58 S. Typhi has established itself globally

- Drug resistance a major and evolving problem
- ESBL particularly frightening
10,000 Salmonella genome project:

Aim: to understand the epidemiology, transmission & virulence of iNTS disease associated Salmonellae

- **Sample Collection**
- **Sample Preparation**
- **DNA Extraction and Sequencing**
- **Results Available through Enterobase**
- **Metadata**
- **Our focus is iNTS associated strains**
- **Salmonella strains from DAC list**

HintonLab

University of Liverpool
Acknowledgements

Kristen Bornstein
Lars Barquist
John Cheesbrough
Xiangyu Deng
Gordon Dougan
Brian Faragher
Melita Gordon
Rob Heyderman
Jan Jacobs
Karen Keddy
Rob Kingsley
Myron Levine
Chisomo Msefula
Fran Olgemöller
Chris Parry
Anthony Smith
Sharon Tennant
Nick Thomson
Paul Wigley
Vanessa Wong