Developing a MAPS vaccine against Salmonella Typhi and Paratyphi

Yingjie Lu, PhD
Rick Malley, MD
Boston Children’s Hospital
Harvard Medical School

10th International Conference on Typhoid and Other Invasive Salmonelloses
April 6, 2017
Kampala, Uganda
Potential Conflict of Interest Disclosure

I disclose the following financial relationships with commercial entities that produce health care-related products or services relevant to the content I am planning, developing, or presenting:

<table>
<thead>
<tr>
<th>Company</th>
<th>Relationship</th>
<th>Content Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merck</td>
<td>Scientific Advisor</td>
<td>Vaccines</td>
</tr>
</tbody>
</table>

I also disclose membership on the Scientific Advisory Board of Arsanis Biosciences, and Advanced Inhalation Therapies. I am a Scientific Founder, consultant and member of the Board of Directors of Affinivax, Inc.

Funding from: NIH, PATH, Bill and Melinda Gates Foundation, TRP and TIDO (Boston Children’s Hospital)
Outline of presentation

1. Overview of MAPS technology
2. Studies of monovalent Vi MAPS
3. Studies of monovalent OSP MAPS
4. Immunogenicity testing of combination vaccine in rabbit model
Some issues with traditional conjugation chemistry

- For multivalent vaccines, containing several PS, each conjugate is essentially a separate vaccine.
- Chemically coupling proteins to PS can be inefficient, complex, and subject to variability.
- Can result in high cost of goods (COGs), difficulties in technology transfer.
- Protein carriers are modified in act of conjugation, resulting in loss of potential protective epitopes. For this reason, most carrier proteins are not selected on basis of potential protection (CRM197, TT).
2. Biotinylation of polysaccharide

Vi polysaccharide → Biotinylated Vi

3. Complex assembly

Vi MAPS complex + OSP MAPS complex → Final typhi/paratyphi bivalent vaccine

1. Recombinant carrier protein

Rhizavidin → expression → Rhavi-protein

2. Biotinylation of polysaccharide

Cross-linked OSP polysaccharide → Biotinylated OSP
Comparison with and advantages over conventional conjugation

1. Immunological responses to PS indistinguishable from those obtained with traditional conjugates (e.g. pneumococcus)

2. Enhanced efficiency of manufacture of MAPS complex (>85% at laboratory scale and now scale-up, compared to 20-40% for conventional conjugates)

3. Little to no PS or protein epitope modification or damage due to controlled biotinylation of the PS and attachment via affinity-interactions with protein rather than cross-linking (Typhoid toxin for example)

4. Modular process (‘‘plug and play’’), allowing for rapid optimization
1. **Hairy Cue Ball** (neoglycoprotein) e.g. Wyeth’s Hib (HbOC), some meningococcal conjugates

2. **Spaghetti and Meat Balls (lattice)** e.g. most conventional conjugates such as PCVs (Prevnar, Synflorix)

3. **Beads on a string** e.g. MAPS complexes with biotin-avidin
Vi antibody titers in Guinea pigs after immunizations with Vi MAPS

<table>
<thead>
<tr>
<th>Conjugate</th>
<th>MAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n.s</td>
</tr>
</tbody>
</table>

Vi-DT conjugate kindly provided by IVI

Vi antibody titers in Guinea pigs after immunizations with Vi MAPS

<table>
<thead>
<tr>
<th>Conjugate</th>
<th>IgG antibody against Vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
<td>[1]</td>
</tr>
<tr>
<td>AFF1</td>
<td>[4]</td>
</tr>
<tr>
<td>Rhavi-rEPA</td>
<td>[16]</td>
</tr>
<tr>
<td>Rhavi-CRM197</td>
<td>[64]</td>
</tr>
</tbody>
</table>

P-values:
- Pre vs Post 1: P=0.0014
- Post 1 vs Post 2: P=0.027
- Pre vs Post 3: P=0.0014
Vi antibody titer duration in Guinea pigs

<table>
<thead>
<tr>
<th>Conjugate</th>
<th>MAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
<td>AFF1</td>
</tr>
<tr>
<td>Rhavi-rEPA</td>
<td>Rhavi-CRM197</td>
</tr>
</tbody>
</table>

IgG antibody against Vi

- **Conjugate**
 - DT
 - AFF1
 - Rhavi-rEPA
 - Rhavi-CRM197

- **MAPS**
 - Post 1
 - Post 3
 - 6 wks p3
 - 10 wks p3
 - 14 wks p3
 - 18 wks P3

Post 1

Post 3

10 wks p3

14 wks p3

18 wks P3

DT Rhavi-rEP

AFA1 Rhavi-CRM197 Conjugate MAPS
Comparison between carriers

<table>
<thead>
<tr>
<th>Carriers</th>
<th>Advantages</th>
<th>Potential issues</th>
<th>Carrier function</th>
</tr>
</thead>
</table>
| Rhavi-rEPA | Highly immunogenic; rEPA has been tested in multiple human clinical trials, good safety track record | Toxin mutant; not used in licensed vaccines; purification scheme needs to be established | Mice: +++
| | | | Guinea pigs: +++
| | | | Rabbit: ++ |
| AFF1 | Excellent carrier; purification established and yield is high (>1g/L); no toxin concern | Not yet tested in humans (part of pneumo project at Affinivax) | Mice: ++
| | | | Guinea pigs: ++
| | | | Rabbit: +++ |
| Rhavi-CRM$_{197}$ | CRM$_{197}$ Used in licensed conjugate vaccines, fewer safety concerns | Yield at lab scale is low. May increase COG | Mice: +++
| | | | Guinea pigs: ++
| | | | Rabbit: Not tested |
Testing for immunological memory: Adoptive transfer experiments

Concept: Infuse B cells from immunized wild type mice into RAG immunodeficient mice and evaluate response to boost in RAG mice

- **WT C57**
 - Immunization with Vi-DT or rEPA-Vi MAPS
 - Wait > 4 weeks

- **RAG^-/-**
 - Adoptive transfer
 - 7 days

- **Bleed**
 - Immunize with Vi, DT and rEPA
 - 14 days

Bleed
Both conventional conjugate and MAPS generate Vi-memory B cells.
Design of OSP MAPS for Paratyphi: Challenges

- **Rationale:** OSP purified from *paratyphi* is small (around 40-50 Kd) which is not optimal for MAPS construct (no crosslinking occurs, as opposed to traditional conjugates)

- **Three strategies for making larger OSP**
 - Clone the whole *S. paratyphi* operon (24kb) and integrate into *E. coli*
 - Delete short chain OSP enzyme WZZ and overexpress long chain OSP enzyme Fepe from *S. paratyphi* or WZZ2 from *Pseudomonas aeruginosa*
 - Chemical crosslinking of OSP
Anti-OSP antibody titer after one to three immunizations in rabbits

IgG antibody against OSP

Conjugate

Maps OSP

Pre immu sera
Sera after one immunization
Sera after two immunizations
Sera after three immunizations
Evaluation of combination of Vi- and OSP-MAPS in rabbits

Vaccines:
Conjugate: Vi-DT (from IVI) and Rhavi-rEPA-OSP (BCH).
MAPS: AFF₁-Vi, AFF₁-OSP dimer

Immunization schedule:
Day 0, pre bleed and immunization;
Day 14, p1 bleed and immunization;
Day 28, p2 bleed.
Immunogenicity of Vi in combination vaccines

5 mg dose

Conjugate | MAPS

1 mg dose

Conjugate | MAPS

Arbitrary unit of anti-Vi IgG

Pre | Post 1 | Post 2

5 mg dose

1 mg dose

Pre | Post 1 | Post 2

Boston Children's Hospital

Until every child is well

HARVARD MEDICAL SCHOOL
TEACHING HOSPITAL
Immunogenicity of OSP in combination vaccines

- 5 g dose
- 1 g dose

<table>
<thead>
<tr>
<th></th>
<th>5 mg dose</th>
<th>1 mg dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arbitrary unit of anti-OSP IgG

- Conjugate
- MAPS
Summary

- Vi-MAPS generated Vi-specific memory response
- Both Vi and OSP MAPS are highly immunogenic in animal models.
 - Mice, IgG titer rise: 100-400 fold rise after two immunizations
 - Guinea pigs: 50 fold rise after one and 100 fold rise after two
 - Rabbits: 100-200 fold rise after one and 400-800 fold rise after two
- Functional antibody generated (correlates with titer)
- Scale-up processes in progress
Acknowledgements

<table>
<thead>
<tr>
<th>BCH Lab</th>
<th>BCH TIDO</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ying-Jie Lu</td>
<td>Abbie Meyer</td>
<td>Velupillai ("Puvy")</td>
</tr>
<tr>
<td>Fan Zhang</td>
<td>Monique Yoakim-Turk</td>
<td>Puvanesarajah</td>
</tr>
<tr>
<td>Olivia Ledue</td>
<td>Irene Abrams</td>
<td>Bob Corder</td>
</tr>
<tr>
<td>BCH TIDO</td>
<td>BCH Lab</td>
<td>Others</td>
</tr>
<tr>
<td>Abbie Meyer</td>
<td>Ying-Jie Lu</td>
<td>Special thanks to Rodney Carbis (IVI)</td>
</tr>
<tr>
<td>Monique Yoakim-Turk</td>
<td>Fan Zhang</td>
<td>for kindly providing Vi-Dt, to J. Robbins, R. Schneerson and S. Szu (NIH) for Vi, and C. Hale and G. Dougan (Wellcome Trust) for typhimurium strains</td>
</tr>
<tr>
<td>Irene Abrams</td>
<td>Olivia Ledue</td>
<td>Others</td>
</tr>
</tbody>
</table>

BMGF
Lyou-Fu Ma
Deborah Lans
Anastazia Older Aguilar
Anita Zaidi
Questions/Comments?

"Hmm, slightly sludgy, with a delicate touch of typhoid."