COMPARISON OF STRATEGIES AND THRESHOLDS FOR Vi CONJUGATE VACCINES AGAINST TYPHOID FEVER: A COST-EFFECTIVENESS MODELING STUDY

Nathan C. Lo, Ribhav Gupta, Jeffrey Stanaway, Denise Garrett, Isaac Bogoch, Stephen Luby, and Jason Andrews

MD/PhD Candidate, Epidemiology
Division of Infectious Diseases and Geographic Medicine
Stanford University School of Medicine

10th International Conference on Typhoid and Other Invasive Salmonelloses
Kampala, Uganda
April 4-6, 2017
Burden of typhoid fever

Estimated global incidence of 12 million with annual mortality of 130,000

Mogasale V. et al., Lancet Glob Health (2014)
A new global strategy for typhoid fever?

- Current global public health strategy relies on passive surveillance
- Older vaccinations have significant limitations
- New generation typhoid conjugate vaccines presents opportunity
 - Potential >90% efficacy
 - Longer duration of immunity
 - Immunogenic in young children (<5 years)
- Increasing antimicrobial resistance with higher mortality may influence decision
Study questions

1) What is the health impact of typhoid conjugate vaccines implemented in routine EPI programs with or without school catch-up campaigns?

2) What are the cost-effective incidence thresholds for delivery of these vaccines?

3) What will the impact of rising drug resistance and associated mortality be on the value of these vaccines?
Methods
Methodological approach

Modeling approach
- Age-structured natural history and dynamic transmission model
- Cost-effectiveness analysis

Data sources
- Meta-analysis of global typhoid burden
- Global burden of disease
- Natural history data from literature

Tested treatment strategies (10 year time horizon)
- Integration with Expanded Program on Immunization (EPI)
 - Routine immunization (<1 year)
 - 85% coverage
- EPI + school catch-up campaign
 - Routine EPI + school aged children (5-14 years)
 - 75% coverage
Dynamic transmission model

Modeling approach:
- Age-structured
- Transmission (2 sources)
 - Short-cycle (person-to-person)
 - Long-cycle (public water supply)
- Sub-clinical infection
- Long-term carriage
- Waning immunity
- Rule of parsimony
- Model comparisons

Legend:
- S: Fully susceptible
- I: Infected
- C: Carrier
- R: Recovered (immune)
- V: Vaccinated (immune)
- W: Water in environment

Observed cases
Cost-effectiveness analysis

Incremental cost-effectiveness ratio (ICER)

- Compares two strategies
- Lower ICER is more cost-effective

ICER calculation

- Cost: 2016 US$ (Societal perspective)
- Effectiveness: Disability adjusted life-years (DALYs)
- Highly cost-effective: ICER < $1035 (GDP per capita of low-income country)
- Cost-effective: ICER < 3x GDP per capita

\[
ICER = \frac{\text{Cost difference}}{\text{DALYs averted}}
\]
Disability and mortality, cost, and vaccination

Disability and mortality inputs for model

<table>
<thead>
<tr>
<th>Disease state</th>
<th>Case-years</th>
<th>Disability weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute infectious disease, moderate</td>
<td>35%</td>
<td>0.05</td>
</tr>
<tr>
<td>Acute infectious disease, severe</td>
<td>48%</td>
<td>0.13</td>
</tr>
<tr>
<td>Abdominal pain and distension(^a)</td>
<td>17%</td>
<td>0.32</td>
</tr>
<tr>
<td>Gastrointestinal bleeding</td>
<td><1%</td>
<td>0.33</td>
</tr>
<tr>
<td>Mortality</td>
<td>1%</td>
<td>--</td>
</tr>
</tbody>
</table>

\(^a\)Includes intestinal perforation

Cost inputs for model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typhoid conjugate vaccine (per dose)</td>
<td>$ 2.50</td>
</tr>
<tr>
<td>EPI-based delivery (per dose)</td>
<td>$ 0.50</td>
</tr>
<tr>
<td>School catch-up delivery (per dose)</td>
<td>$ 1.00</td>
</tr>
<tr>
<td>Total cost for EPI (per child)</td>
<td>$ 6.00</td>
</tr>
<tr>
<td>Total cost for catch-up (per child)</td>
<td>$ 7.00</td>
</tr>
<tr>
<td>Vaccine coverage (%)</td>
<td>75-85</td>
</tr>
</tbody>
</table>

EPI; Expanded Program on Immunization

Typhoid conjugate vaccine assumptions

- 91% efficacy
- 20 year immunity duration
Results
Model calibration

Main points:

- Transmission model was fit to age distribution
- Model was fit across low, medium, and high incidence settings
- Model reproduced data
Typhoid vaccination may substantially reduce incidence

- **Medium incidence setting (50 cases per 100,000)**

 - Base case
 - EPI
 - EPI + Catch-up

- **High incidence setting (100 cases per 100,000)**

EPI; Expanded Program on Immunization
Conjugate vaccines highly cost-effective in medium incidence setting

EPI vaccination strategy → highly cost-effective in medium incidence settings (>50 cases per 100,000)

EPI vaccination + school catch-up campaign → highly cost-effective in high incidence settings (>150 cases per 100,000)

Analysis used a willingness-to-pay optimized for low-income country
Antimicrobial resistance may affect incidence thresholds

![Graph showing the relationship between case fatality rate and incidence threshold for EPI and EPI+School scenarios.](image-url)
Limitations

- Substantial country-specific heterogeneity, uncertainty around typhoid biology, and constraints of common modeling assumptions

- General relationship between incidence and age distribution of typhoid cases

- Economic threshold (willingness-to-pay) may vary for countries; context- or budget-specific analyses can be done

- Vaccine cost and mortality are influential parameters
Conclusion

- Typhoid Vi conjugate vaccines through EPI may be highly cost-effective in moderate incidence settings (50 annual cases per 100,000).

- Typhoid vaccination through EPI with school catch-up campaign may be highly cost-effective in high incidence settings (150 annual cases per 100,000).

- These results were sensitive to case fatality rates, underscoring the need to consider rising antimicrobial resistance in vaccine decision making.
Acknowledgements

Senior investigator: Jason Andrews, MD

Key collaborators
Ribhav Gupta
Jeffrey Stanaway, PhD
Denise Garrett, MD
Isaac Bogoch, MD
Stephen Luby, MD

Funding to Nathan C. Lo:
Medical Scientist Training Program (MSTP)
• National Institutes of Health
• Stanford School of Medicine

Contact: Nathan.Lo@stanford.edu
Conclusion

- Typhoid Vi conjugate vaccines through EPI may be highly cost-effective in moderate incidence settings (50 annual cases per 100,000).

- Typhoid vaccination through EPI with school catch-up campaign may be highly cost-effective in high incidence settings (150 annual cases per 100,000).

- These results were sensitive to case fatality rates, underscoring the need to consider rising antimicrobial resistance in vaccine decision making.