Tackling iNTS disease

Allan Saul
Sclavo Behring Vaccines Institute for Global Health
Bali, 2nd May 2015
Tackling iNTS diseases

Prevention AND treatment

- Treatment
 - Diagnosis remains a challenge
 - Awareness of population at risk and risk factors
 - Changing patterns of drug resistance
- Environmental intervention
 - Mode of transmission?
 - What is the reservoir?
 - Human to human or animal (bird) to human?
 - Environmental persistence?
- Vaccines
 - Burden of disease estimates
 - Identification of target populations
 - Identification of trial sites and endpoints

All three depend on epidemiological research
Why a vaccine for iNTS?

– Difficult to diagnose
– Rapid onset
– Widespread drug resistance
– Other vaccines (Hib, pneumococcal) work well in the African context

- iNTS vaccine attractive
- Likely be feasible to develop and efficacious
iNTS vaccines

<table>
<thead>
<tr>
<th>Candidate Name/Identifier</th>
<th>Pre-clinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>POC</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuated oral vaccine: CVD 1931Typhimurium ΔguaBA, ΔclipX and CVD 1944 (S. Enteritidis ΔguaBA, ΔclipX) [UMB]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attenuated oral vaccine: WTO5S. (S. Typhimurium ΔaroC, ΔssaV) [Microscience Limited]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O:4,5-TT [NIH]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O antigen-flagellin conjugates. O:4,5 : FliCi and O:9 : FliCg,m. [UMB; Bharat Biotech; Wellcome Trust]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalent conjugate (O:4,5-CRM${197}$ and O:9-CRM${197}$) [SBVGH]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O:4,5-GMMA and O:9-GMMA [SBVGH]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OmpD [University of Birmingham, SBVGH]</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See discussion paper for WHO vaccine priority meeting

http://who.int/entity/immunization/research/meetings_workshops/NonTyphoidalSalmonella_VaccineRD_Sept2014.pdf?ua=1
Timelines for iNTS vaccine 2015 - 2026

- Best case scenario for development
 - Assumes no delays (almost never happens)
 - Minimizes future predictions for burden of disease
- Worst case scenario for resources
 - Potential bottleneck in obtaining epidemiological input
 - Requires major early investment in trials and manufacturing
Timeline and epidemiological implications

<table>
<thead>
<tr>
<th>2015: Preclinical</th>
<th>2016-2017: Phase 1</th>
<th>2019: Phase 2 & cPoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccines in development</td>
<td>Production of pilot scale GMP vaccine</td>
<td>Age de-escalation completed in infants</td>
</tr>
<tr>
<td>Case for an iNTS vaccine</td>
<td>Trials in healthy adult volunteers</td>
<td>Phase 3 manufacturer engaged</td>
</tr>
<tr>
<td>Initial TPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epidemiology to support early development</td>
</tr>
<tr>
<td>Epidemiology to support early development</td>
<td>Epidemiology to support case for Phase 3 trials and manufacture</td>
<td>Epidemiology to support case for deployment</td>
</tr>
<tr>
<td>Target groups identified</td>
<td>cPoC criteria identified</td>
<td>Phase 3 trial sites ready</td>
</tr>
<tr>
<td>Epidemiology to support TPP</td>
<td>Phase 3 efficacy sites identified</td>
<td>Engagement of WHO/UNICEF/GAVI and other public and national health authorities</td>
</tr>
</tbody>
</table>
Timeline and epidemiological implications

<table>
<thead>
<tr>
<th>2023: Phase 3 Efficacy</th>
<th>2025: Registration</th>
<th>2026+ deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacture scaled up</td>
<td>National registration</td>
<td>Phase 4 studies</td>
</tr>
<tr>
<td>Consistency lots</td>
<td></td>
<td>WHO prequalification</td>
</tr>
<tr>
<td>Trials in HIV infected adults</td>
<td></td>
<td>allowing UNICEF/GAVI involvement</td>
</tr>
<tr>
<td>Phase 3 studies complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficacy estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update of burden of disease figures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preparation for deployment</td>
<td>Vaccine effectiveness studies</td>
</tr>
</tbody>
</table>
Target Product Profile (TPP)

- Target populations (infants, HIV all ages, high incidence areas?)
- Minimum usable efficacy
 - This strongly impacts Phase 3 trial design
- Minimum usable longevity of protection
- A lot of technical stuff re dose, production, formulation etc.,

First 3 require substantial epidemiological input
The impact of the vaccine over period 2025 -2035?

– Need to know how many are infected now
– Predict changes that will happen in next 20 years and impact on iNTS incidence
– Need to predict impact of vaccine on burden of disease
 – Likely vaccine uptake
 – Likely efficacy
 – Other factors
– Burden of disease and impact need credible range estimates
Timeline and epidemiological implications

<table>
<thead>
<tr>
<th>2015: Preclinical</th>
<th>2016-2017: Phase 1</th>
<th>2019: Phase 2 & cPoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccines in development</td>
<td>Production of pilot scale GMP vaccine</td>
<td>Age de-escalation completed in infants</td>
</tr>
<tr>
<td>Case for importance of iNTS vaccine</td>
<td>Trials in healthy adult volunteers</td>
<td>Phase 3 manufacturer engaged</td>
</tr>
<tr>
<td>Initial TPP</td>
<td>Epidemiology to support early development</td>
<td>Epidemiology to support deployment</td>
</tr>
<tr>
<td>Epidemiology to support Target groups identified</td>
<td>Epidemiology to support case for Phase 3 trials and manufacture cPoC criteria identified</td>
<td>Phase 3 trial sites ready</td>
</tr>
<tr>
<td>Epidemiology to support TPP</td>
<td>Phase 3 efficacy sites identified</td>
<td>Engagement of WHO/UNICEF/GAVI and other public and national health authorities</td>
</tr>
</tbody>
</table>
By 2017: cPoC criteria identified

- cPoC is NOT an estimation of efficacy for registration
- Existing animal models and *in vitro* killing activity (SBA, OP assay) but no surrogate for protection in humans
- For Infants
 - *S. Typhimurium* infection – inverse correlation with antibody
 - Loss of passive maternal antibody and low actively induced antibody
 - cPoC may be based on antibody levels
 - *S. Enteritidis* infection – no published data
- For HIV infections – not clear.
- Sero-epidemiology would be useful at least in infants
By 2017: Phase 3 / efficacy sites identified
By 2020 sites ready

- Infants only, HIV adults only, both?
- *S.* Typhimurium, *S.* Enteritidis, or both (and others)?
- Needs stable infection rates
- Needs infrastructure to identify and diagnose cases.
 - *c.f.* RTS,S trials for a disease with much higher incidence.
- Probably needs multiple sites
Efficacy studies – Trial design

– Assumptions
 – Testing a bivalent vaccine in Infants
 – Age distribution similar to that seen in Malawi (MacLennan et al, J Clin Invest. 2008)
 – Vaccination at EPI schedule and followed until 18 months old
 – Vaccine is 80% efficacious
 – Power of the trial is equal to 80%
 – Lower Limit of 95% CI for efficacy rate is ≥10%
 – Vaccine and placebo group ratio is 1:1
– Expect 15 cases in each group in absence of vaccination

10-20,000 subjects needed
assuming similar incidence to that seen in the RTS,S trials
Conclusions

- Vaccines for iNTS are feasible
- Development will require a strong epidemiological basis
 - Burden of disease estimates
 - Identification of target populations
 - Identification of trial sites and endpoints
- Timeline is critical – Delays add to development costs and uncertainties