Vi-CRM$_{197}$ conjugate vaccine against typhoid fever: development and early clinical testing

Audino Podda, Head of Clinical Development & Regulatory Affairs for the NVGH Development Project Team & Clinical Teams of the Vi-CRM$_{197}$ studies

8th International Typhoid Fever and Invasive Salmonelloses – Dhaka, Bangladesh
Agenda

- Status of project as presented in Kilifi
- Clinical plan overview
- Phase 1 & dose ranging studies
- Phase 2 studies in endemic countries
- Proposed basis for pre-qualification
- Next steps
- Acknowledgements
Vi-CRM$_{197}$: Laboratory proof of concept presented in Kilifi (Laura Martin | January 2009)

- Immunogenic and well tolerated
 - Antibody response is dose dependent
 - 1:1 or 2:1 weight ratio Vi:CRM$_{197}$ superior to 10:1 ratio

- anti-Vi antibody levels comparable to other Vi-conjugates
 - Analysis of sera supplied by NIH
 - Using CRM$_{197}$, TT conjugates made with Vi obtained from NIH
Vi-CRM$_{197}$ – Clinical development overview

A 30 month journey: key milestones

- **Feb 2010:** GMP lot released
- **Oct 2010:** Phase 2 started in EU
- **Sept 2011:** First clinical Paper published
- **Dec 2011:** Phase 2 started in Asia (India)
- **Oct 2012:** All CSR’s completed

- **Apr 2010:** Phase 1 started
- **Mar 2011:** Phase 2 started in Asia (Pakistan)
- **Oct 2011:** Phase 2 started in Asia (Philippines)
- **Feb 2012:** Immunizations completed
Phase 1 & dose ranging studies in EU adults (1)

Study design

Clinical Site:
Center for Evaluation of Vaccines
University of Antwerp – Belgium
PI: Prof. Pierre Van Damme

First in Man Trial

<table>
<thead>
<tr>
<th>Group</th>
<th>Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Vi-CRM$_{197}$ conjugate (25.0 µg/dose)</td>
</tr>
<tr>
<td>B</td>
<td>Typherix (25.0 µg/dose)</td>
</tr>
</tbody>
</table>

Dose Ranging trial

<table>
<thead>
<tr>
<th>Group</th>
<th>Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Vi-CRM$_{197}$ conjugate (12.5 µg/dose)</td>
</tr>
<tr>
<td>B</td>
<td>Vi-CRM$_{197}$ conjugate (5.0 µg/dose)</td>
</tr>
<tr>
<td>C</td>
<td>Vi-CRM$_{197}$ conjugate (1.25 µg/dose)</td>
</tr>
<tr>
<td>D</td>
<td>Typherix (25.0 µg/dose)</td>
</tr>
</tbody>
</table>

Source: Van Damme et al. PLoS ONE 2011; 6 (9): e25398 doi; 10.1371
Phase 1 & dose ranging studies in EU adults (2)

Anti-Vi serum IgG 28 days after vaccination

Log2 scale

Selected for further clinical evaluation
Phase 2 clinical studies in endemic countries (1)

Study Design

<table>
<thead>
<tr>
<th>Age Group</th>
<th>1° dose</th>
<th>2° dose</th>
<th>3° dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults 18-45 y</td>
<td>Vi-CRM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vi-PS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children 24-59 mo</td>
<td>Vi-CRM</td>
<td>Vi-CRM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vi-PS</td>
<td>Prevenar</td>
<td></td>
</tr>
<tr>
<td>Older Infants 9 mo</td>
<td>Vi-CRM + EPI</td>
<td>Vi-CRM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevenar + EPI</td>
<td>Prevenar</td>
<td></td>
</tr>
<tr>
<td>Infants 6 wks</td>
<td>Vi-CRM + EPI</td>
<td>Vi-CRM + EPI</td>
<td>Vi-CRM + EPI</td>
</tr>
<tr>
<td></td>
<td>Prevenar+EPI</td>
<td>Prevenar+EPI</td>
<td>Prevenar+EPI</td>
</tr>
</tbody>
</table>

* Doses 8 weeks apart in children & and older infants
** Doses 4 weeks apart in infants
Phase 2 clinical studies in endemic countries (2)

Clinical Sites and population enrolled

<table>
<thead>
<tr>
<th>PAKISTAN</th>
<th>INDIA</th>
<th>PHILIPPINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aga Khan University Karachi, Pakistan</td>
<td>KEM Hospital Pune, India</td>
<td>Research Institute for Tropical Medicine Manila, Philippines</td>
</tr>
<tr>
<td>PI: Prof Zulfiqar Buttha</td>
<td>PI: Prof Ashish Bavdekar</td>
<td>PI: Prof Rose Capeding</td>
</tr>
<tr>
<td>Prof Sajid Soofi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults 18-45 years</td>
<td>Adults 18-45 years</td>
<td></td>
</tr>
<tr>
<td>Children 24-59 months</td>
<td>Children 24-59 months</td>
<td></td>
</tr>
<tr>
<td>Older Infants 9 months</td>
<td>Older Infants 9 months</td>
<td></td>
</tr>
<tr>
<td>Infants 6 weeks</td>
<td>Infants 6 weeks</td>
<td></td>
</tr>
</tbody>
</table>
Overall safety profile in endemic countries trials

Pakistan, India & Philippines, combined data

<table>
<thead>
<tr>
<th>Vaccine</th>
<th># subjects</th>
<th># doses</th>
<th>Any death</th>
<th>Any SAE*</th>
<th>Any Local</th>
<th>Any systemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vi-CRM\textsubscript{197}</td>
<td>40 adults</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>19 (48%)</td>
<td>20 (50%)</td>
</tr>
<tr>
<td></td>
<td>40 children</td>
<td>80</td>
<td>0</td>
<td>2 (5%)</td>
<td>23 (58%)</td>
<td>16 (40%)</td>
</tr>
<tr>
<td></td>
<td>40 older infants</td>
<td>80</td>
<td>0</td>
<td>4 (10%)</td>
<td>9 (23%)</td>
<td>18 (45%)</td>
</tr>
<tr>
<td></td>
<td>40 infants</td>
<td>120</td>
<td>0</td>
<td>5 (13%)</td>
<td>34 (85%)</td>
<td>33 (83%)</td>
</tr>
<tr>
<td>Control</td>
<td>40 adults</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>20 (50%)</td>
<td>20 (50%)</td>
</tr>
<tr>
<td></td>
<td>40 children</td>
<td>80</td>
<td>0</td>
<td>2 (5%)</td>
<td>22 (55%)</td>
<td>18 (45%)</td>
</tr>
<tr>
<td></td>
<td>40 older infants</td>
<td>80</td>
<td>0</td>
<td>5 (13%)</td>
<td>21 (53%)</td>
<td>29 (73%)</td>
</tr>
<tr>
<td></td>
<td>39 infants</td>
<td>117</td>
<td>0</td>
<td>4 (10%)</td>
<td>31 (79%)</td>
<td>28 (72%)</td>
</tr>
</tbody>
</table>

* No Serious Adverse Event was vaccine related
Immunogenicity in Adults is similar in Europe and Asia

Anti-Vi serum IgG 28 days after vaccination

Log2 scale

Europe

India & Pakistan combined data

ELISA GMC

Vi-PS 25μg Vi-CRM$_{197}$ 5μg
Vi-CRM197 (5µg) in 9 month infants vs. Vi-PS (25µg) in adults

Anti-Vi serum IgG 28 days after vaccination

Vi-PS: All adults from NVGH studies in endemic countries combined
Vi-CRM$_{197}$: Older infants from NVGH studies in endemic countries combined
NVGH proposed basis for WHO pre-qualification

- Field trials with the Vi-PS vaccines and Vi-rEPA have consistently shown that anti-Vi IgG serum antibodies confer protection against typhoid fever.

- The investigators of the Vi-rEPA efficacy trial defined serological correlates of protection (i.e., threshold of anti-Vi antibody levels which correlates with clinical protection)

- Therefore, the prequalification of ViCP-CV could be based on immunogenicity data (i.e., without a pre-licensure efficacy trial with clinical endpoints)

- Regulatory wise, two approaches should be considered:
 - ViCP-CV induce protective titers in children <2 years. Sero-protection rates can be calculated by correlating the manufacturer’s ELISA data with the NIH ELISA data used to define serological correlates of protection in the Vietnamese efficacy trial
 - Immunogenicity of ViCP-CV in <2 years is not inferior than that of the licensed Vi-PS in >2 years (i.e., age groups where the clinical efficacy of Vi-PS was shown and the vaccine is licensed)

- Following registration and pre-qualification, larger post marketing surveillance studies should be undertaken to further assess vaccine effectiveness and long term safety
Conclusions

- NVGH studies show that Vi-CRM$_{197}$ is a safe and well tolerated vaccine in all age groups.

- NVGH studies show that Vi-CRM$_{197}$ is immunogenic in infants and inclusion of a typhoid vaccine into WHO EPI schedules is a concrete possibility.

- NVGH is ready to pass the baton to an Asian manufacturer to complete development, obtain licensure, achieve WHO pre-qualification and start distribution.
Acknowledgements

All study participants of clinical studies and their families

Aga Khan Clinical Team
Zulfiqar Buttha
Sajid Soofi
Atif Habib
Shabina Ariff
Noshad Ali

RITM Manila Clinical Team
Maria Rosario Capeding
Edison Alberto
Nelia Malubay

KEM Clinical Team
Ashish Bavdekar
Sanjay Juvekar
Anand Kawade

NVGH Development Project Team
Laura Martin & all of NVGH

Vi-CRM$_{197}$ DSMB
Steven Black
Dipika Sur
Sajid Maqbool
Lulu Bravo
Juhani Eskola

Antwerp CEV Clinical Team
Pierre Van Damme
Froukje Kafeja
Ilse De Coster

Funding
SVA
FMdP
RT