Intra-continental transmission of human invasive *Salmonella Typhimurium* variants

Chinyere Okoro

Wellcome Trust Sanger Institute
Cambridge

01.03.13
Salmonella enterica (subspecies I)

Non-Typhoidal Salmonellae (NTS)

- Usually gastrointestinal
- Variably invasive
- Non host restricted
- Zoonotic

Typhoidal Salmonellae

- Invasive
- Host restricted
- Human-to-human

3 billion human and animal infections/year
Invasive NTS (iNTS) disease in sub-Saharan Africa, emergence of a new disease?

Blood stream infections in SSA
- 58.4% NTS
- 51-80% S. Typhimurium
- 10-40% S. Enteritidis

Bacteraemia - Distinct syndrome
- Non-specific fever,
- infrequent diarrhoea
- Rapid progression
- 24-51% mortality
- 43% recurrence rate (without ART)

Host factors
- Malaria,
- Anaemia
- Sickle cell anaemia
- HIV (adults)
179 S. Typhimurium genomes sequenced

- Isolates associate with invasive disease (129)
- Gastroenteritis-associated isolates (50)
Sub-Saharan isolates fall into two epidemic lineages that emerged independently

10,623 SNPs
~96% of non-recombinant, non-repetitive genome used in analyses

Lineage I
- $N=50$
- 33 SNP differences

Lineage II
- $n=68$
- 21 SNP differences

~455 SNPs

>700 SNPs
Multiple international transmission events occurred across SSA within each lineage

Spread of lineage I clones
Spread of lineage II clones

Nodes where transmissions occur

- T1
- T2
- T3
- T4
- Uganda
- Kenya
- Malawi
- Mozambique
- Mali
- Nigeria
- DRC

Colors and symbols indicate:
- Older
- 3

Wellcome Trust Sanger Institute
Successful transmission and clonal expansion is linked to acquisition of MDR genes

- Composite Tn21-like elements
- Borne on pSLT-like backbone with distinct phylogenetic history
- Different insertion sites on pSLT - virulence plasmid

Kingsley et al, Genome Research, 2009
Orthologous genes in Tn21 variants

Tn21
Malawi
~1960 - 1965

Tn21+cat
DRC
~1984 - 1987
Spread of epidemic invasive S. Typhimurium clones temporally coincides with the HIV epidemic
Genome degradation – Convergent evolution in human adapted serotypes e.g. S. Typhi

- 23 pseudogenes
- 20 gene deletions
- 60% degraded genes absent/degraded in S. Typhi / S. Paratyphi A genome
Summaries

• 2 lineages responsible for invasive S. Typhimurium disease epidemic in SSA

• Independent clonal expansion (beginning from the 1960’s)

• Successful transmission within a susceptible host population (MDR on Tn21-like elements)

• Clonal replacement 2002-2005 (acquisition chloramphenicol resistance in Lineage II)

• Rapid spread enhanced by the increase in susceptible host population (HIV in adults; malaria in children).

• Possible human-to-human transmission

Similar isolates to index cases not found in household animals, veterinary animals, environment etc

– genomic signatures of adaptation in invasive S. Typhimurium
Acknowledgements

The Wellcome Trust Sanger Institute
Gordon Dougan
Julian Parkhill
Robert Kingsley
Simon Harris
Thomas Connor
Sequencing team

University of Nebraska
Stephen Obaro

University of Liverpool
Melita Gordon
Chris Parry

Health Protection Agency
UK
John Wain
Elizabeth De Pinna

University of Maryland Center for Vaccine Development
Mike Levine
Sharon Tennant

Mahidol-Oxford Tropical Medicine Research Unit
Chris Parry

Centro de Investigação em Saúde da Manhiça (CISM)
Pedro Alonso
Inacio Mandomando

NVGH
Calman MacLennan

Malawi-Liverpool–Wellcome Trust Clinical Research Program
Rob Heyderman
Chisomo Msefula