Attenuated non-typhoidal *Salmonella* strains as live oral vaccines and as reagent strains for conjugate vaccine production

Sharon Tennant
Center for Vaccine Development (CVD), University of Maryland School of Medicine
Baltimore, MD, USA
Target age by disease burden

• Sub-Saharan Africa
 – Children < 36 months of age
 – Deliver through the Expanded Program on Immunization (EPI) along with pentavalent vaccine, OPV and rotavirus vaccine at ~ 6, 10 & 14 weeks of age

• North America, Europe
 – Elderly
 – Deliver along with future Clostridium difficile and norovirus vaccines, as well as influenza and future elderly pneumococcal vaccine
Roles for CVD attenuated NTS strains

• As *live oral vaccines* (*guaBA clpPX*)

• To make *conjugate vaccine* (COPS-FliC) production safer & more economical:

 \[\Delta guaBA\]- Primary attenuating mutation. Bacteria require exogenous guanine for growth in vitro. This deletion allows large-scale fermentation with enhanced occupational health safety

 \[\Delta clpPX\]- Secondary attenuating mutation results in enhanced flagella expression for *economical purification* of flagella

 \[\Delta fliD\]- Flagellin exported as monomers which enables *economical purification* of flagellin
Engineered NTS strains constructed

Prototype strains (for proof of principle in mice)

S. Typhimurium I77 (ST19)
- CVD 1921 -- ΔguaBA ΔclpP (hyperexpresses flagella)
- CVD 1925 -- ΔguaBA ΔclpP ΔfliD ΔfljB (hyperexpresses Phase 1, but not Phase 2, flagellin monomers)

S. Enteritidis R11
- CVD 1941 -- ΔguaBA ΔclpP
- CVD 1943 -- ΔguaBA ΔclpP ΔfliD

Definitive oral vaccine strains (for clinical trials)

S. Typhimurium D65 (ST313)
- CVD 1931 -- ΔguaBA ΔclpX

S. Enteritidis R11
- CVD 1944 -- ΔguaBA ΔclpX
Phenotypes of attenuated strains

- Flagella
- COPS

\[\Delta \text{guaBA} \]
\[\Delta \text{guaBA} \Delta \text{clpPX} \]
\[\Delta \text{guaBA} \Delta \text{clpPX} \Delta \text{fliD} \]

- LIVE VACCINE
- REAGENT STRAIN

CVD 1925 wt 1943
NTS clpPX mutants are more motile than wild-type and fliD mutants are non-motile.
NTS strains harboring $\Delta guaBA$, $\Delta clpP$ and deletions are highly attenuated in mice

<table>
<thead>
<tr>
<th>Strain</th>
<th>LD50$_{p.o.}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>2×10^4 CFU</td>
</tr>
<tr>
<td>$\Delta guaBA$</td>
<td>$>10^9$ CFU</td>
</tr>
<tr>
<td>$\Delta guaBA, \Delta clpP$</td>
<td>$>10^{10}$ CFU</td>
</tr>
</tbody>
</table>
Immunized mice produce high serum IgG anti-LPS and anti-FliC titers

Mice were immunized on days 0, 28 and 56 and challenged on day 84 with 100 LD50's.
Live attenuated S. Typhimurium vaccines mediate homologous but not heterologous protection

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Challenge</th>
<th>Challenge dose</th>
<th>Vaccine efficacy</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD 1921 (ΔguaBA ΔclpP) ST19</td>
<td>S. Typhimurium I77 (B; i; 1,2)</td>
<td>100 X LD50s</td>
<td>86%</td>
<td>P<0.001</td>
</tr>
<tr>
<td>CVD 1931 (ΔguaBA ΔclpX) ST313</td>
<td>S. Typhimurium D65 (B; i; 1,2)</td>
<td>10,000 X LD50s</td>
<td>100%</td>
<td>P<0.001</td>
</tr>
<tr>
<td>CVD 1931 (ΔguaBA ΔclpX) ST313</td>
<td>S. Stanleyville J65* (B; z4,z23)</td>
<td>3 X LD50s</td>
<td>91%</td>
<td>P<0.001</td>
</tr>
<tr>
<td>CVD 1931 (ΔguaBA ΔclpX) ST313</td>
<td>S. Enteritidis R11 (D; gm)</td>
<td>50 X LD50s</td>
<td>51%</td>
<td>P=0.07</td>
</tr>
</tbody>
</table>

Mice were immunized orally on days 0, 28 and 56 and challenged orally on day 84

* i.p. challenge
Live attenuated S. Enteritidis vaccines mediate homologous and heterologous protection

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Challenge</th>
<th>Challenge dose</th>
<th>Vaccine efficacy</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD 1941 (ΔguaBA ΔclpP)</td>
<td>S. Enteritidis R11 (D; gm)</td>
<td>100 X LD50s</td>
<td>76%</td>
<td>P<0.001</td>
</tr>
<tr>
<td>CVD 1944 (ΔguaBA ΔclpX)</td>
<td>S. Enteritidis R11 (D; gm)</td>
<td>10,000 X LD50s</td>
<td>83%</td>
<td>P<0.001</td>
</tr>
<tr>
<td>CVD 1944 (ΔguaBA ΔclpX)</td>
<td>S. Dublin R17 (D; gp)</td>
<td>~800 X LD50s</td>
<td>85%</td>
<td>P<0.001</td>
</tr>
<tr>
<td>CVD 1944 (ΔguaBA ΔclpX)</td>
<td>S. Typhimurium D65 (B; i; 1,2)</td>
<td>~200X LD50s</td>
<td>81%</td>
<td>P=0.002</td>
</tr>
</tbody>
</table>

Mice were immunized orally on days 0, 28 and 56 and challenged orally on day 84
• Target populations for NTS vaccines include high risk groups for mortality in the USA (elderly) & Africa (infants & perhaps HIV-positive adults)

• Candidate live oral vaccines and reagent strains have been constructed

• Prototype \(\Delta guaBA \Delta clpPX \) attenuated NTS strains are:
 – Safe, immunogenic and protective in mice
 – Safe in SIV-infected Rhesus macaques
Live oral vaccine summary 2

• Live NTS vaccines elicit significant seroconversion (4-fold or > rise) of anti-LPS & anti-flagellin antibody titers

• Antibodies show functional antibody activity

• Definitive live oral NTS vaccines have been shown to be protective against a highly lethal challenge in mice

• A live attenuated S. Enteritidis vaccine was able to mediate cross-protection against S. Typhimurium but not vice versa
Acknowledgements

Center for Vaccine Development (CVD) University of Maryland Baltimore

Jin Y. Wang
Patrick Schmidlein
Deanna Toema
Girish Ramachandran
Mary Boyd
Raphael Simon
James E. Galen
Marcela Pasetti
Sofie Livio
Orit Gat
Myron M. Levine

This work was funded by the Middle Atlantic RCE Program, NIAID/NIH 2 U54 AI057168-06.