National Center for Emerging and Zoonotic Infectious Diseases



### Typhoid Fever in the U.S. Pediatric Population and the Potential Benefits of New Vaccines

### Grace D. Appiah, MD

Division of Foodborne, Waterborne, and Environmental Diseases Centers for Disease Control and Prevention

11<sup>th</sup> International Conference on Typhoid and Other Invasive Salmonelloses

## Background

### **Typhoid Fever in the United States**

- Public health improvements in early 20<sup>th</sup> century
  - Municipal water and sewage treatment systems
  - Declines in typhoid fever incidence and mortality<sup>1</sup>
- 350 laboratory-confirmed *Salmonella* Typhi cases annually
  - ~80% acquired during international travel<sup>2</sup>
    - 2008-2012 CDC study<sup>3</sup> showed 87% decreased susceptibility or resistance to fluoroquinolones in travelers to South Asia

<sup>1</sup>Cutler D and Miller G. The Role of Public Health Improvements in Health Advances: The 20<sup>th</sup> century United States. Demography. 2005;42: 1-22 <sup>2</sup>Jackson, Brendan R., Shahed Idpal, and Barbara Mahon. "Updated recommendations for the use of typhoid vaccine—Advisory Committee on Immunization Practices, United States, 2015." *MMWR. Morbidity and mortality weekly report* 64.11 (2015): 305 <sup>3</sup>Date, Kashmira A., et al. "Changing patterns in enteric fever incidence and increasing antibiotic resistance of enteric fever isolates in the United States, 2008–2012." Reviews of Infectious Diseases 63.3 (2016): 322-329.

### **Typhoid Vaccines Licensed in U.S.**

| Vaccine              | Ty21a              | ViCPS              |
|----------------------|--------------------|--------------------|
| Brand name           | Vivotif            | Typhim Vi          |
| Howgiven             | Oral               | IM injection       |
| Ageindication        | $\geq$ 6 years old | $\geq$ 2 years old |
| Number of doses      | Four doses         | One dose           |
| Booster<br>frequency | q5 years           | q2 years           |
| Effectiveness        | 50% to 80%         | 50%-80%            |

Modified from: <u>http://www.coalitionagainsttyphoid.org/prevent-treat/typhoid-vaccines</u> \*Ongoing studies; Estimated VE from adult challenge study

### **Typhoid Conjugate Vaccine (TCV)**

| Vaccine                | тсv                 |
|------------------------|---------------------|
| Brand name             | Typbar-TCV          |
| Howgiven               | IM injection        |
| Age indication         | $\geq$ 6 months old |
| Number of doses        | One dose            |
| Duration of protection | ≥ 3 years* 🛛 🎆 🚰    |
| Effectiveness          | 87%*                |

Modified from: <u>http://www.coalitionagainsttyphoid.org/prevent-treat/typhoid-vaccines</u> \*Ongoing studies; Estimated VE from adult challenge study

### Surveillance for Typhoid Fever—United States



System (NARMS)

### XDR Typhi in the United States, 2016–2019

- CDC enhanced surveillance for typhoid fever in travelers to or from Pakistan<sup>1</sup>
  - Retrospective review and prospective screening
- 46 patients with typhoid fever had travel to or from Pakistan
  - <u>11 travel-associated cases with XDR Typhi</u>
    - 9 (82%) children, median age 8 (4–26) years
    - 7 reported visiting friends and relatives (VFR) in Pakistan
    - None known to be vaccinated

<sup>1</sup>Chatham-Stephens, Kevin, et al. "Emergence of Extensively Drug-Resistant Salmonella Typhi Infections Among Travelers to or from Pakistan—United States, 2016–2018." *Morbidity and Mortality Weekly Report* 68.1 (2019): 11.

### Epidemic Curve of Travelers to or from Pakistan with Salmonella Typhi—United States, 2016–2019



As of March 1, 2019

### **Study Rationale**

- In light of the XDR Typhi outbreak and increasing availability of TCV
  - we characterized clinical, epidemiologic, and antimicrobial resistance data of pediatric typhoid fever cases reported to CDC

## **Study Design**

### **Study Design**

### Objective

- Understand the epidemiology of typhoid fever in the US pediatric population from 1999-2015
- Methods
  - Analyzed<sup>1</sup> NTPFS demographic, clinical, and epidemiology characteristics and NARMS antimicrobial resistance (AMR) patterns for pediatric (< 18 years old) and adult cases, 1999-2015</li>

<sup>1</sup>Statistical analysis performed using Fischer exact test, Cochrane Armitage test, false discovery rate used to correct for Type 1 errors due to multiple comparisons

### Definitions

- **Travel-associated**: travel outside U.S within 30 days before symptom onset
- Vaccine eligible: travel-associated case, age ≥ 2 years old, with travel to ≥ one country where CDC recommends typhoid vaccination
- Fluoroquinolone nonsusceptible (FQ-NS): MICs classified as intermediate (MIC =0.12−0.5 µg/mL) or resistant (MIC ≥1 µg/mL) to ciprofloxacin, or resistant to nalidixic acid
- Multidrug resistance (MDR): MICs classified as resistant to ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole (TMP-SMX)

## **Preliminary Results**

Slides courtesy of Dr. Jarred McAteer and CDC NARMS

# Typhoid Fever Cases Reported to NTPFS by Year and Age Group – United States, 1999-2015 (n= 4,973)



### Typhoid Fever Cases Reported to NTPFS by Year and Age Group – United States, 1999-2015 (n= 4,973)



### Number of Pediatric Typhoid Fever Cases by Age Group – United States, 1999-2015 (n = 1,992)

| Age      | Total reported | Percent of      |
|----------|----------------|-----------------|
| Group    | cases          | pediatric cases |
| <6mo     | 14             | <1%             |
| 6mo-1yo  | 210            | 11%             |
| 2-5yo    | 575            | 29%             |
| 6уо-17уо | 1193           | 60%             |

# Travel History among Typhoid Fever Cases Reported to NTPFS – United States, 1999-2015

|                                  | AGE (y      | Dualua      |         |  |
|----------------------------------|-------------|-------------|---------|--|
| Characteristics                  | <18         | ≥18         | P-value |  |
| Total reported cases             | 1992        | 2981        |         |  |
| Median age, y (range)            | 7 (0.02–17) | 31 (18–103) |         |  |
| Travel-associated*               | 1616 (83%)  | 2379 (83%)  | 0.69    |  |
| Visiting friends/relatives (VFR) | 1128 (71%)  | 1387 (63%)  | <0.001  |  |

\* Denominators for travel-associated cases: 1941 and 2873 respectively for children and adults, for VFR: 1590 and 2201 respectively

### Vaccine Eligibility and Vaccination Status among Typhoid Fever Cases Reported to NTPFS – United States, 1999-2015

|                      | AGE (      | Dualua     |         |
|----------------------|------------|------------|---------|
| Characteristics      | <18        | ≥18        | P-value |
| Travel-associated*   | 1616 (83%) | 2379 (83%) | NS      |
| Vaccine eligible     | 1435 (83%) | 2303 (80%) | < 0.01  |
| Received vaccination | 68 (5%)    | 92 (5%)    | NS      |

Among children with travel-associated typhoid: 134 (8%) were vaccine ineligible based on young age (6 months to under 2 years old)

\*Denominators for travel-associated cases: 1941 and 2873 respectively for children and adults, for vaccine eligible: 1722 and 2873; for vaccinated: 1361 and 1921 respectively

### Regions Visited by U.S. Pediatric Typhoid Fever Patients who Traveled in 30 Days before Illness (n=1,616)



### Single Countries Visited by U.S. Pediatric Typhoid Fever Patients in 30 Days before Illness (n=1,616)

| Country    | <b>UN Region</b> | Pediatric Typhoid<br>cases (%) |
|------------|------------------|--------------------------------|
| India      | South Asia       | 785 (49%)                      |
| Pakistan   | South Asia       | 239 (15%)                      |
| Bangladesh | South Asia       | 227 (14%)                      |

# AMR patterns in isolates tested by NARMS — United States, 1999-2015 (n=5,004)

|                                                        | Typhoid fever isolates, n (%) |                 |         |
|--------------------------------------------------------|-------------------------------|-----------------|---------|
| Characteristics                                        | <18<br>(n=2003)               | ≥18<br>(n=3001) | P-Value |
| MDR*                                                   | 320 (16%)                     | 272 (9%)        | <0.001  |
| FQ-NS**                                                | 1216 (61%)                    | 1619 (54%)      | <0.001  |
| Both MDR and FQ-NS                                     | 272 (14%)                     | 236 (8%)        | <0.001  |
| Susceptible to 7 clinically relevant<br>antibiotics*** | 723 (36%)                     | 1312 (44%)      | <0.001  |

\*Resistant to ampicillin, chloramphenicol, TMP-SMX

\*\*Fluoroquinolone nonsusceptible (defined as intermediate or resistant to ciprofloxacin and or resistant to nalidixic acid) \*\*\* Nalidixic acid, ampicillin, chloramphenicol, TMP-SMX, ceftriaxone, ciprofloxacin, and azithromycin (tested since 2011)

# AMR Patterns of Isolates from Pediatric Cases by Travel Destination — United States, 1999-2015

|            |                    | AMR patterns, n (%) |           |               |
|------------|--------------------|---------------------|-----------|---------------|
| Region     | Pediatric<br>Cases | FQ-NS               | MDR       | MDR and FQ-NS |
| Asia       | 917                | 727 (79%)           | 158 (17%) | 142 (15%)     |
| South Asia | 860                | 709 (82%)           | 149 (17%) | 136 (16%)     |
| India      | 521                | 465 (89%)           | 33 (6%)   | 30 (6%)       |
| Bangladesh | 168                | 139 (83%)           | 48 (29%)  | 47 (28%)      |
| Pakistan   | 158                | 98 (62%)            | 67 (42%)  | 59 (37%)      |

## **Conclusions and Implications for Prevention**

### Summary: US Typhoid Cases, 1999-2015

- Increase in number of culture-confirmed pediatric typhoid fever cases reported annually from 1999-2015
- 83% of pediatric cases were travel-associated and 71% were VFR
  - Travel to South Asia, especially India and Pakistan, was common
- Typhi isolates from pediatric cases more likely to be fluoroquinolone nonsusceptible and MDR than isolates from adult cases
  - Most isolates from cases who traveled to South Asia were fluoroquinolone non-susceptible
- Although most pediatric travelers were vaccine-eligible
  - 8% were not age eligible for current vaccines
  - Among vaccine-eligible, only 5% were vaccinated

### **Implications for Prevention**

- Potential Benefits of TCVs
  - Increase pediatric vaccine eligibility for children ≥6 months
    - more opportunities for pre-travel consultation during routine pediatric visits (6, 9, 12 and 15 months)
    - Vaccinate young VFR travelers
- Strategies to promote more use of currently licensed typhoid vaccines
- In addition to vaccination, continue to promote safe food and water practices while traveling abroad

National Center for Emerging and Zoonotic Infectious Diseases



### Acknowledgments

### Waterborne Disease Prevention Branch

Eric Mintz Jarred McAteer Alison Winstead

#### **Enteric Disease Epidemiology Branch**

Michael Hughes Karen Wong Kevin Chatham-Stephens

#### **Statistics Team**

Gordana Derado Richard Bishop Li Deng

#### National Antimicrobial Resistance Monitoring System

Cindy Friedman Felicita Medalla Jared Reynolds Louise Francois Watkins Ian Plumb Meseret Birhane

#### **Enteric Disease Laboratory Branch**

Amelia Bhatnagar