A Bayesian approach for estimating typhoid fever incidence from passive surveillance data

11th International Conference on Typhoid & Other Invasive Salmonelloses March 26-28, 2018

Maile T. Phillips, M.S.

Yale School of Public Health Advisor: Virginia E. Pitzer, ScD

Yale school of public health

 Decision-making for typhoid control and prevention is based on crude estimates of typhoid incidence

- Decision-making for typhoid control and prevention is based on crude estimates of typhoid incidence
- Facility-based laboratory-confirmed case estimates of typhoid are likely lower than actual number

- Decision-making for typhoid control and prevention is based on crude estimates of typhoid incidence
- Facility-based laboratory-confirmed case estimates of typhoid are likely lower than actual number
 - Only a fraction of individuals with typhoid seek care at a healthcare facility

- Decision-making for typhoid control and prevention is based on crude estimates of typhoid incidence
- Facility-based laboratory-confirmed case estimates of typhoid are likely lower than actual number
 - Only a fraction of individuals with typhoid seek care at a healthcare facility
 - Only a fraction of individuals with typhoid who seek care receive a blood culture diagnostic test

- Decision-making for typhoid control and prevention is based on crude estimates of typhoid incidence
- Facility-based laboratory-confirmed case estimates of typhoid are likely lower than actual number
 - Only a fraction of individuals with typhoid **seek care** at a healthcare facility
 - Only a fraction of individuals with typhoid who seek care receive a blood culture diagnostic test
 - Only a fraction of individuals with typhoid who receive a blood culture test positive for typhoid

Infections reported are only a fraction of the true number

Blood culture confirmed infections

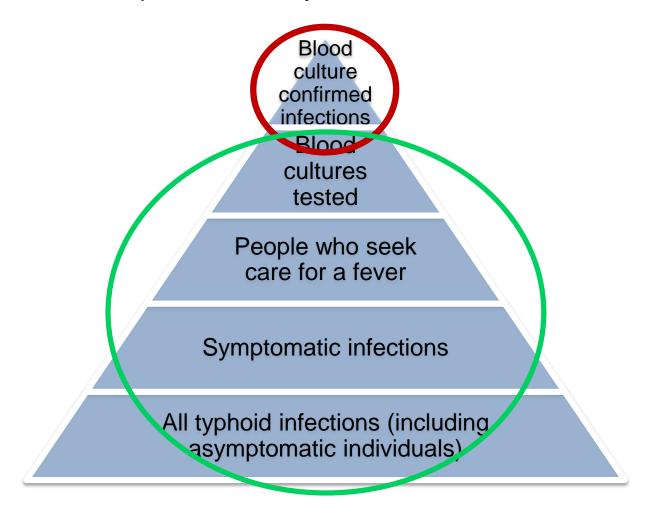
Blood cultures tested

People who seek care for a fever

Symptomatic infections

Infections reported are only a fraction of the true number

cultures


People who seek care for a fever

Symptomatic infections

Infections reported are only a fraction of the true number

Blood culture confirmed infections Blood cultures tested

People who seek care for a fever

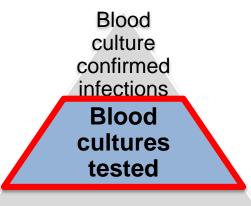
Symptomatic infections

Blood culture confirmed infections Blood cultures

People who seek care for a fever

tested

Symptomatic infections


Blood culture confirmed infections Blood cultures tested

People who seek care for a fever

Symptomatic infections

People who seek care for a fever

Symptomatic infections

Blood cultures tested

People who seek care for a fever

Symptomatic infections

STRA tegic Typhoid alliance across Africa and Asia (STRATAA)

WEDNESDAY, MARCH 27

8:30-10:30 STRATAA/TyVAC

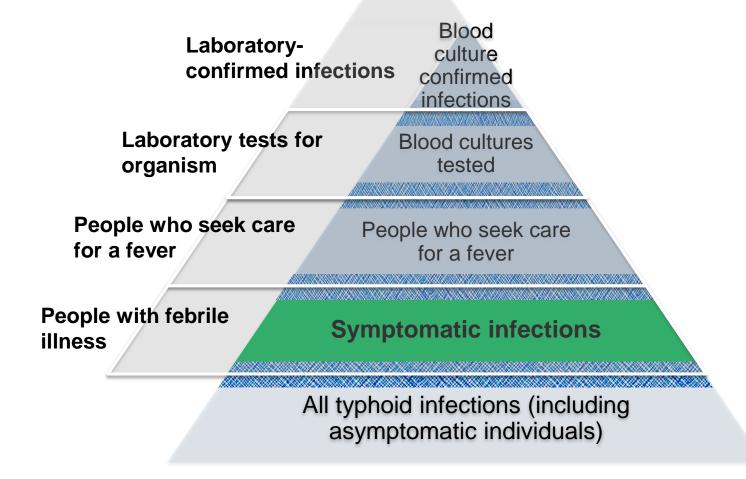
SYMPOSIUM SESSION CHAIRED BY:
Andrew J. Pollard, University of Oxford & Kathleen Neuzil,
University of Maryland School of Medicine

Burden of Enteric Fever in Africa and Asia from Three Urban Centres: A Multicentre,
Prospective Epidemiological Study with over 600,000 Person-Years of Observation
James Meiring, University of Oxford

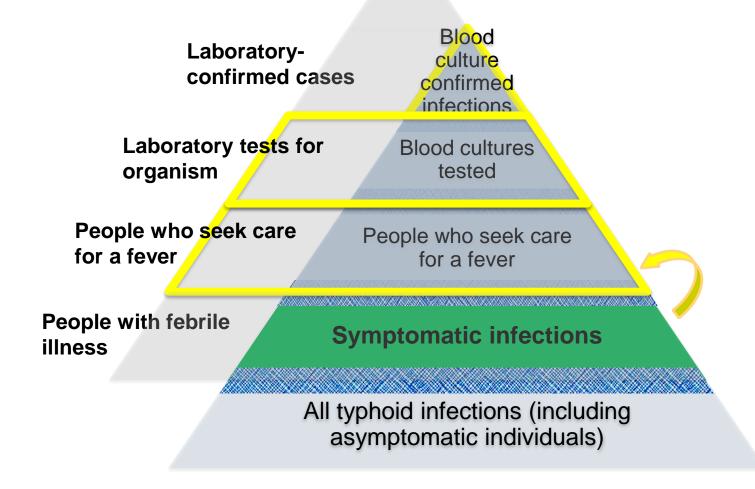
- A 2-year prospective epidemiological study
- 3 sites:
 - O Dhaka, Bangladesh
 - O Patan, Nepal
 - O Blantyre, Malawi
- Passive surveillance, serosurveillance, and healthcare utilisation surveys nested within demographic census population

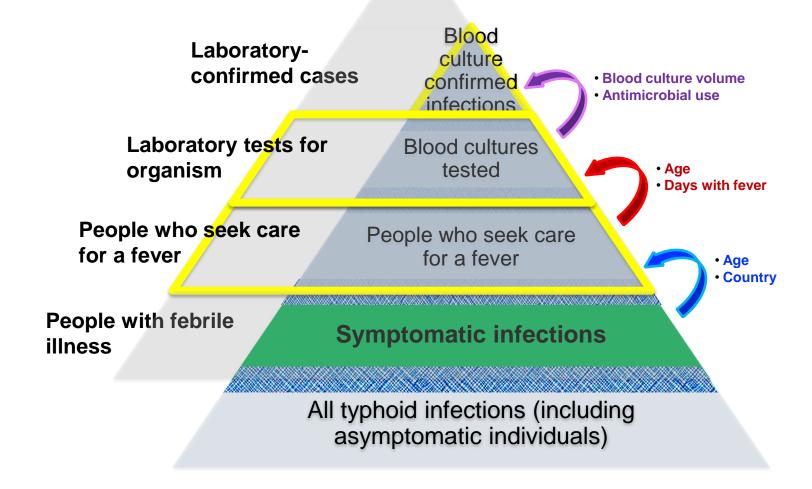
Estimating symptomatic typhoid infection incidence

Blood culture confirmed infections Blood cultures tested

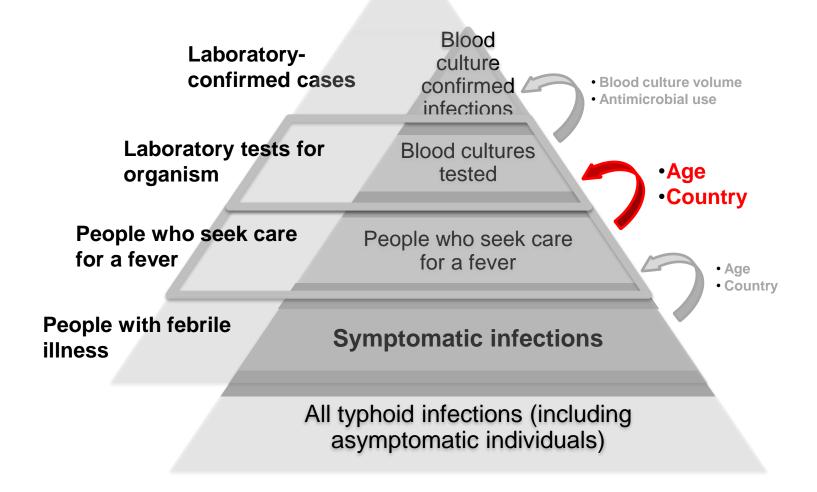

People who seek care for a fever

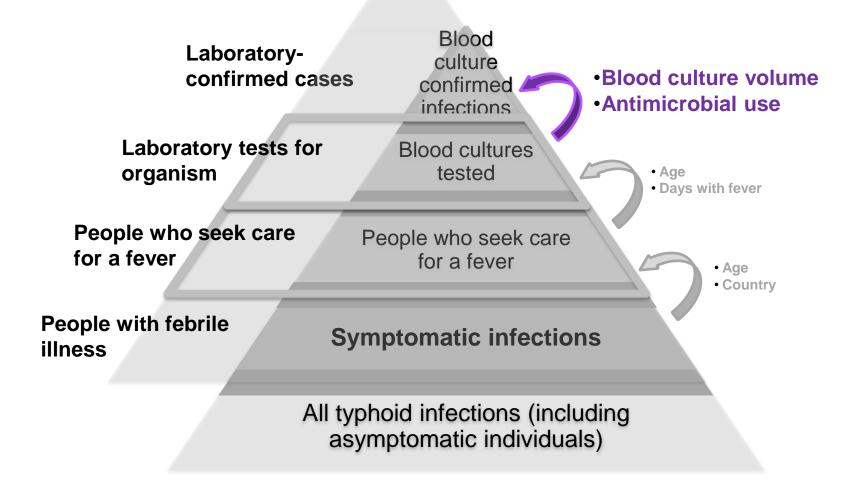
Symptomatic infections

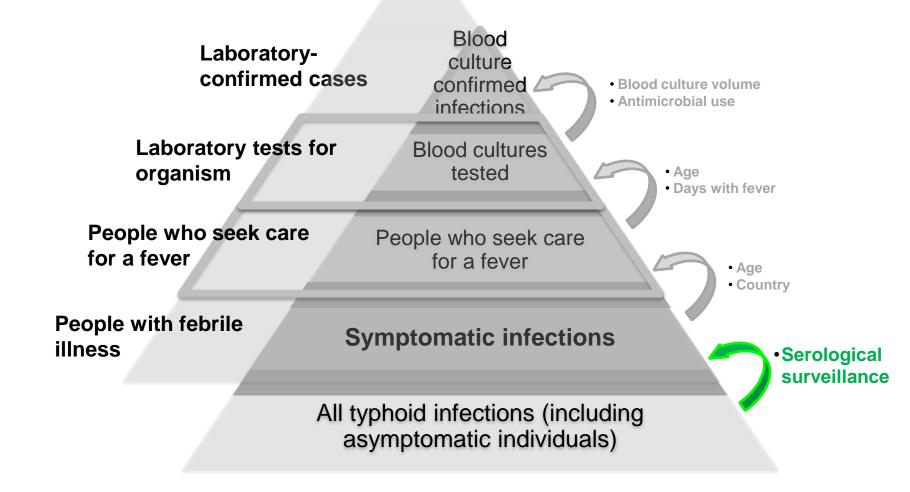

Typhoid nested in febrile pyramid


Observed (STRATAA) data


Additional Sources of Information


Probability of seeking healthcare

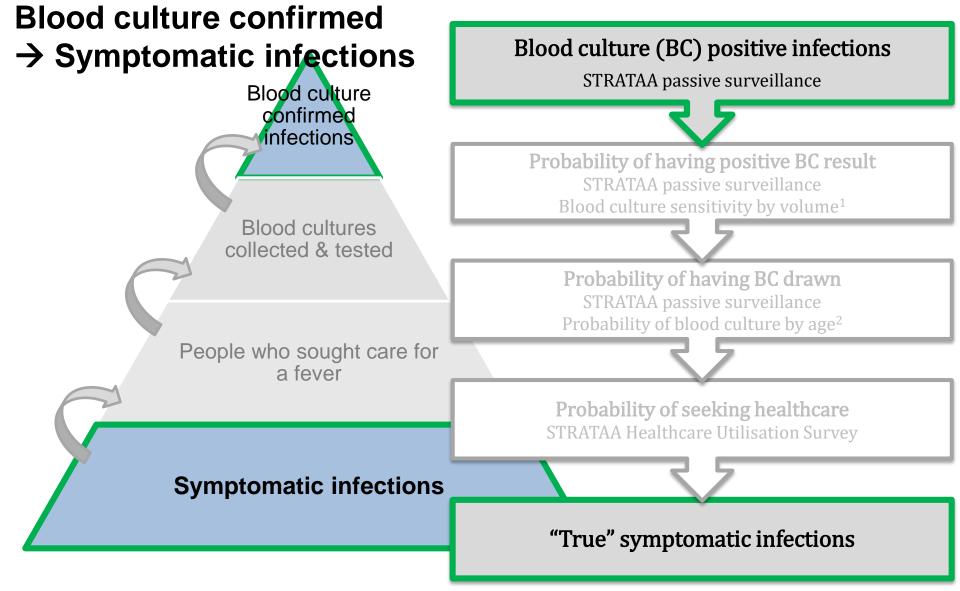

Probability of having a blood culture


Probability of testing positive

Serosurveillance: An upper bound on estimates

Bayesian inference

- Combines past experience with new data to form the current state of knowledge
- Quantifies uncertainty about estimates


Bayesian Framework Blood culture (BC) positive infections STRATAA passive surveillance **Blood culture** confirmed infections Probability of having positive BC result STRATAA passive surveillance Blood culture sensitivity by volume¹ **Blood cultures** collected & tested Probability of having BC drawn STRATAA passive surveillance Probability of blood culture by age People who sought care for a fever Probability of seeking healthcare STRATAA Healthcare Utilisation Survey Symptomatic infections

Antillón M et al. (2018). JID 218 (supp 4).

"True" Symptomatic Infections

1. Antillón M et al. (2018). JID 218 (supp 4).

Intervening processes Blood culture (BC) positive infections STRATAA passive surveillance Blood culture confirmed infections Probability of having positive BC result STRATAA passive surveillance Blood culture sensitivity by volume¹ Blood cultures collected & tested Probability of having BC drawn STRATAA passive surveillance Probability of blood culture by age² People who sought care for a fever Probability of seeking healthcare STRATAA Healthcare Utilisation Survey Symptomatic infections "True" Symptomatic Infections

1. Antillón M et al. (2018). JID 218 (supp 4).

Bayesian Framework Blood culture (BC) positive infections STRATAA passive surveillance **Blood culture** confirmed infections Probability of having positive BC result STRATAA passive surveillance Blood culture sensitivity by volume¹ **Blood cultures** collected & tested Probability of having BC drawn STRATAA passive surveillance Probability of blood culture by age² People who sought care for a fever Probability of seeking healthcare STRATAA Healthcare Utilisation Survey Symptomatic infections

1. Antillón M et al. (2018). *JID 218* (supp 4).

"True" Symptomatic Infections

		Age category				
	Country	<5	5-14	15+	all	
Pr(BC	Bangladesh	53%	53%	55%	53%	
positive	Nepal	53%	53%	56%	54%	
BC test)	Malawi	52%	53%	58%	54%	
Pr(BC	Bangladesh	82%	83%	84%	83%	
test	Nepal	65%	76%	82%	70%	
seek HC)	Malawi	39%	36%	20%	34%	
Driesek	Bangladesh	43%	32%	22%	30%	
Pr(seek	Nepal	31%	15%	21%	24%	
HC)	Malawi	62%	53%	52%	56%	

Lower probabilities

	Country	<5	5-14	15+	all	
Pr(BC	Bangladesh	53%	53%	55%	53%	1
positive	Nepal	53%	53%	56%	54%	about the same
BC test)	Malawi	52%	53%	58%	54%	J
Pr(BC	Bangladesh	82%	83%	84%	83%	
test	Nepal	65%	76%	82%	70%	
seek HC)	Malawi	39%	36%	20%	34%	
Dr/sook	Bangladesh	43%	32%	22%	30%	
Pr(seek HC)	Nepal	31%	15%	21%	24%	
пс)	Malawi	62%	53%	52%	56%	

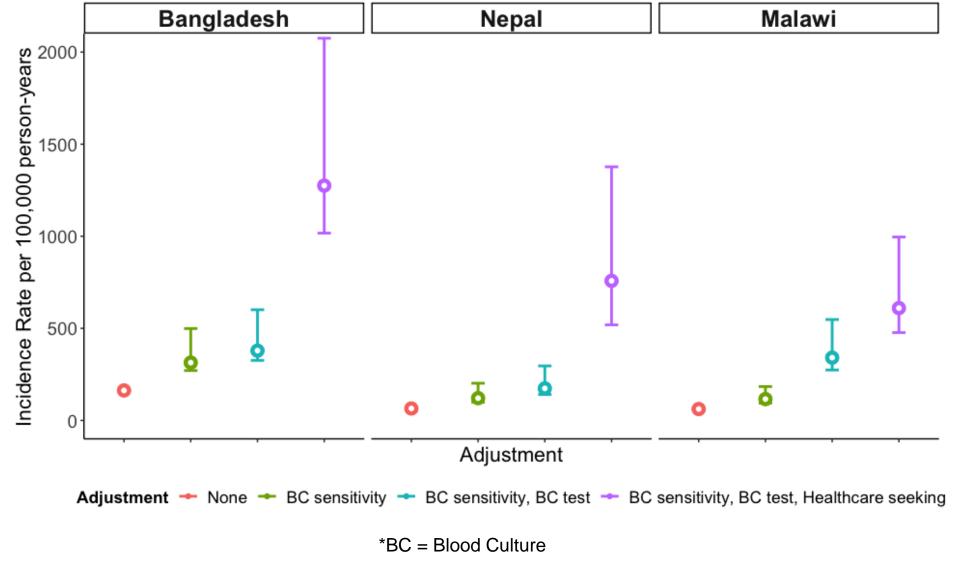
Lower probabilities

		Age category				
	Country	<5	5-14	15+	all]_
Pr(BC	Bangladesh	53%	53%	55%	53%	17
positive	Nepal	53%	53%	56%	54%	about the same
BC test)	Malawi	52%	53%	58%	54%] _
Pr(BC	Bangladesh	82%	83%	84%	83%	
test	Nepal	65%	76%	82%	70%	
seek HC)	Malawi	39%	36%	20%	34%	Malawi is lower
Dr/sook	Bangladesh	43%	32%	22%	30%	
Pr(seek	Nepal	31%	15%	21%	24%	
HC)	Malawi	62%	53%	52%	56%	

Lower probabilities

	Country	<5	5-14	15+	all	_
Pr(BC	Bangladesh	53%	53%	55%	53%	11
positive	Nepal	53%	53%	56%	54%	about the same
BC test)	Malawi	52%	53%	58%	54%] _
Pr(BC	Bangladesh	82%	83%	84%	83%	1
test	Nepal	65%	76%	82%	70%	
seek HC)	Malawi	39%	36%	20%	34%	Malawi is lower
Dricook	Bangladesh	43%	32%	22%	30%	
Pr(seek	Nepal	31%	15%	21%	24%	Nepal is lower
HC)	Malawi	62%	53%	52%	56%	

Lower probabilities


	Age category					
	Country	<5	5-14	15+	all]_
Pr(BC	Bangladesh	53%	53%	55%	53%	17
positive	Nepal	53%	53%	56%	54%	about the same
BC test)	Malawi	52%	53%	58%	54%]]
Pr(BC	Bangladesh	82%	83%	84%	83%]
test	Nepal	65%	76%	82%	70%	
seek HC)	Malawi	39%	36%	20%	34%	Malawi is lower
Dricook	Bangladesh	43%	32%	22%	30%	
Pr(seek	Nepal	31%	15%	21%	24%	Nepal is lower
HC)	Malawi	62%	53%	52%	56%	Malawi is higher

Lower probabilities

Adjustments to Incidence Rates

Overall results

o 8- to 12-fold adjustments

	Crude rates*	Adjusted rates* (95% credible intervals)	Ratio (adj./obs.)		
Bangladesh	163	1,275 (1,017-2,075)	7.8		
Nepal	65	758 (519-1,377)	11.7		
Malawi	62	610 (477-996)	9.8		
*per 100,000 person-years					

Overall results: Bangladesh

 Bangladesh has the highest crude incidence rates, but the lowest adjustment ratio

	Crude rates*	Adjusted rates* (95% credible intervals)	Ratio (adi./obs.)		
Bangladesh	163	1,275 (1,017-2,075)	7.8		
Nepal	65	758 (519-1,377)	11.7		
Malawi	62	610 (477-996)	9.8		
*per 100,000 person-years					

Overall results: Nepal

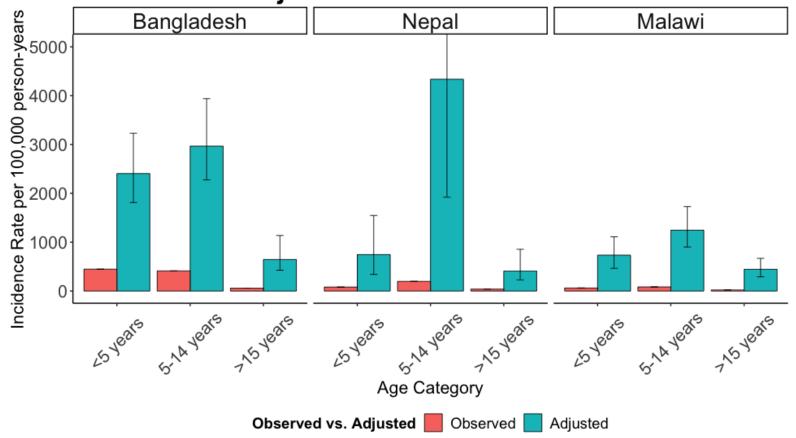
Nepal has the highest adjustment ratio

	Crude rates*	Adjusted rates* (95% credible intervals)	Ratio (adj./obs.)		
Bangladesh	163	1,275 (1,017-2,075)	7.8		
Nepal	65	758 (519-1,377)	11.7		
Malawi	62	610 (477-996)	9.8		
*per 100,000 person-years					

Overall results: Malawi

Malawi is somewhere in between

	Crude rates*	Adjusted rates* (95% credible intervals)	Ratio (adj./obs.)		
Bangladesh	163	1,275 (1,017-2,075)	7.8		
Nepal	65	758 (519-1,377)	11.7		
Malawi	62	610 (477-996)	9.8		
*per 100,000 person-years					



Adjusted rates vary by age

- Adults (15+ years) had the lowest incidence rates
- Children 5-14 years had the highest incidence rates

Observed vs. Adjusted Incidence Rates

Implications

Passive surveillance of blood culture-confirmed results is a considerable underestimation of the true incidence of typhoid in the population

Passive surveillance of blood culture-confirmed results is a considerable underestimation of the true incidence of typhoid in the population

- Our model provides a method to estimate incidence while accounting for the reporting process
 - Improved understanding of intervening processes
 - Can be updated with additional information or contexts

Implications

Passive surveillance of blood culture-confirmed results is a considerable underestimation of the true incidence of typhoid in the population

- Our model provides a method to estimate incidence while accounting for the reporting process
 - Improved understanding of intervening processes
 - Can be updated with additional information or contexts
- These upward-adjusted estimates can be used for analysis and/or decision-making for typhoid control

Acknowledgements

BILL& MELINDA GATES foundation

Oxford UK

Andrew Pollard, James Meiring, Merryn Voysey, Christoph J. Blohmke, Yama Ghulam Faroog, Jennifer Hill, Susan Tonks, Rachel Colin-Jones, Sarah Kelly, Olga Mazur, Nicola Smith, Sophie Temple

Archana, Maharjan

Cambridge, UK

Gordon Dougan, Zoe Dyson, Emily Lees, Ankur Mutreja, Derek Pickard, Stephen Reece

Dhaka, Bangladesh

John Clemens, Firdausi Qadri, Khaleguzzaman Zaman, Arifuzzaman Khan, Farhana Khanam, Nirod Chandra Saha,

Ho Chi Minh, Vietnam

Stephen Baker, Thomas Darton, Christiane Dolocek, Tan Trinh Van, Nhu Tran Hoang, Tran Vu Thieu Nga

Blantyre, Malawi

Melita Gordon, Robert Heyderman, Tonney Nyirenda,

Chisomo Msefula, Deus Thindwa, Happy Chimphako Banda, Angeziwa Chunga Chirambo, Moses Kamzati, Tikhala Makhaza Jere, Clemens Masesa, Maurice Mbewe, Harrison Msuku, Patrick Munthali, Rose Nkhata, Eunice Kadzakumanja, Eve Kossam

Melbourne, Australia

Sarah Dunstan, Kat Holt, Mike Inouye, Artika Nath, Louise Judd

New Haven, USA

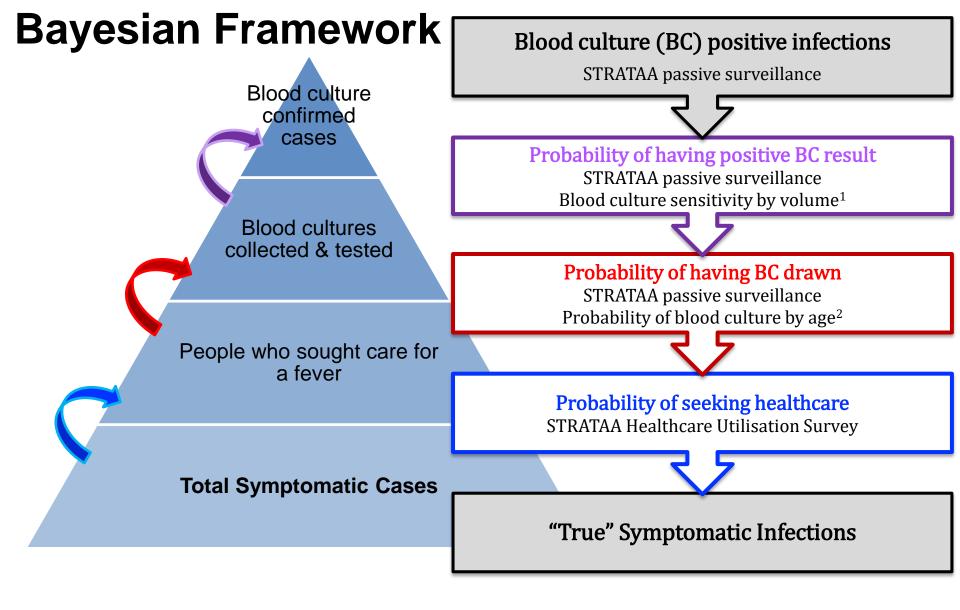
Virginia Pitzer, Maile Thayer Phillips, Yu-Han Kao, Neil Saad

Kathmandu, Nepal

Buddha Basnyat, Mila Shakya, Abhilasha Karkey, Sabina Dongol, Amit Aryja, Anup Adhikari, Maheshwar Ghimire, Pallavi Gurung,

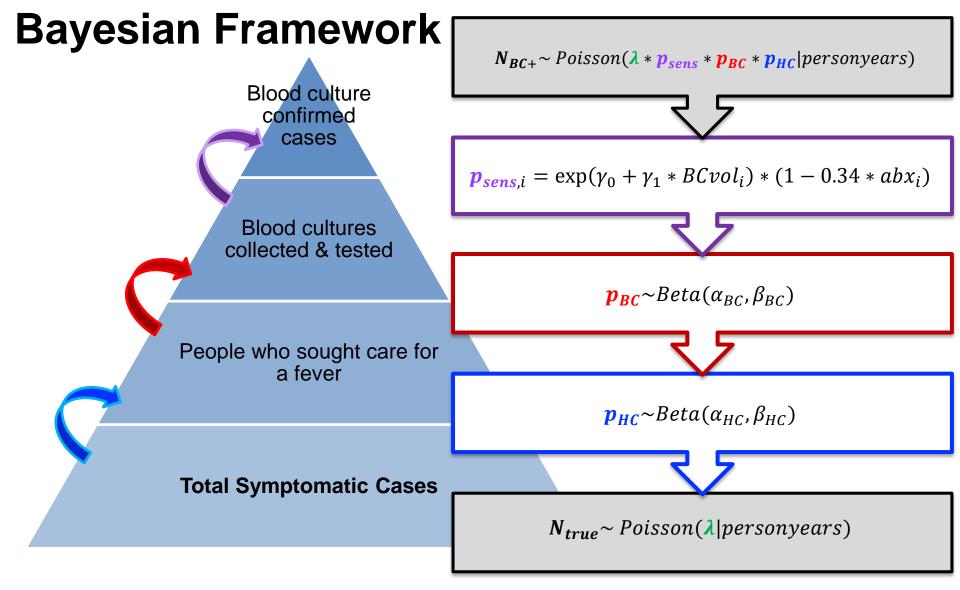
STRATAA

Bayesian inference


 Bayesian inference combines past experience (prior) with new data (likelihood) to form the current state of knowledge (posterior)

posterior ∝ likelihood × prior

Observed data Information from additional sources



1. Antillón M et al. (2018). JID 218 (supp 4).

*Non-informative priors unless otherwise specified

