

Method optimisation for detection of *Salmonella* Typhi from the environment

Jonathan Rigby, Liverpool School of Tropical Medicine

Malawi background & rationale

Malawi is an typhoid endemic country

- Outbreak of unknown origin in Blantyre, Malawi started 2012
- >16,000 cases per year, ~200 deaths associated with typhoid

Methods Development Project Primary aim: culture & detect S. Typhi from the environment

Figure 1: Feasey et al., 2015, Monthly trends in bloodstream invasive Salmonella diagnosed at QECH from November 2010-October 2014.

Isolation of *Salmonella* Typhi from the environment is difficult but not impossible

Sampling from sewerage proved effective

- ≤1950s
 - Moore's swabs
 - Specific required culture methods
- 1980s
 - Reinforced the use of Moore's swabs
 - Selenite-F is the most effective for S. Typhi
- Viable but non-culturable (VBNC)

New approaches use molecular methods

 Strongly associated with water & indirect transmission in endemic regions

Figure 1: Electron micrograph of a salmonella taken by Matthew Hannah, PHE

Culture remains important

Twenty isolates from the PHE culture collection were used

Figure 2: Global distribution of strains used in optimisation & evaluation of environmental isolation (Satheesh Nair, PHE)

Isolates from different regions selected for laboratory testing

The use of a novel chromogenic agar, mCASE was selected for the isolation of salmonella

Figure 3: Pure S. Typhi on mCASE

Methods for the isolation of Salmonella Typhi were assessed

Figure 4: Two examples of the pathways assessed

- Pathways were narrowed to four options from original 15
 - Selenite cysteine broth was preferred due to its selectivity but does not remove *S*. Typhi like alternatives (e.g. Rappaport Vassiliadis broth)
 - Bile broth: infection starts post exposure to bile

Too Many Plates

Preliminary working at PHE Food, Water & Environmental Laboratory

- Hundreds of plates a week processed
 - Under laboratory conditions with control strains, S. Typhi was reliably retrieved
 - Environmental testing required

Photo Credit: https://www.flickr.com/photos/erikaleef

Following narrowing of the pathways, challenges set up with blind, mixed cultures

Challenge Organisms

- Salmonella Nottingham same colour as S. Typhi on mCASE
- Bacillus cereus similar colour & overgrows
- Fungi blind cultures grew relatively well in the broths

Immuno-magnetic bead separation ran in parallel

- Pan-Salmonella bead, developed by Ezzeddine Elmerhebi, Neogen LabM
- Further work required in situ as artificial mixtures showed no major difference in recovery rates

Figure 5: Mixed culture on mCASE, where S. Typhi was successfully selected

Molecular approaches utilised to reinforce culture methods developed

Figure 6: Pathway emphasising confirmation step

- The main aim of the project is to develop a method for culturing environmental *S*. Typhi
- Molecular methods are more cost effective & high-throughput
- Quantitative PCR also allows for screening of incoming samples
 - Inhibitors such as environmental, chemical & faecal contaminants

Note: Current DNA-based molecular methods cannot prove viability

Novel assay from PHE used for rapid diagnostics

Satheesh Nair, PHE, designed an assay for diagnostics

- The original assay included primer's for Paratyphi A, B & C
- This project aims to multiplex the *S*. Typhi targets
- Multiplexed assay is currently being optimised
- Probes changed from original to minimise interference in multiplex

Table 1: Primer sequences of PHE assay and source publications

Gene	Name	Sequence 5'-3'	NCBI Accession Number	Reference
ttr	ttr_F	CTCACCAGGAGATTACAACATGG	AF282268	Hopkins, 2009
	ttr_R	AGCTCAGACCAAAAGTGACCATC		
	ttr_P	FAM-CACCGACGGCGAGACCGACTTT-BHQ1		
sseJ	sseJ_F	CGAGACTGCCGATGCATTTA	AF294582	Nair, 2019
	sseJ_R	GTACATAGCCGTGGTGAGTATAAG		
	sseJ_P	YY-TGGAGGCGGCCAGTAATATTGGTT-BHQ1		
tviB	tviB_F	TGTGGTAAAGGAACTCGGTAAA	NC_003198	Nair, 2004
	tviB_R	GACTTCCGATACCGGGATAATG		
	tviB_P	CY3-TGGATGCCGAAGAGGTAAGACGAGA-BHQ2		
staG	staG_F	CGCGAAGTCAGAGTCGACATAG	AL513382	Nga, 2010
	staG_R	AAGACCTCAACGCCGATCAC		
	staG_P	CY5-CATTTGTTCTGGAGCAGGCTGACGG-BHQ2		

High-Resolution Melt (HRM) PCR

The multiplex assay is being adapted to HRM

- Thomas Edwards, LSTM, consulted in assay conversion
 - ❖ Results consistent with *S*. Typhi & non-typhoidal salmonella control strains
 - Further optimisation & design changes

Figure 7: HRM melt curves for positive Salmonella Typhi

Role of the assay

Figure 8: q-PCR assay for blind broth "A"

Figure 9: HRM-PCR assay for blind broth "A"

As a tool for screening & confirmation, the blind cultures were processed with both the probe based q-PCR & the HRM PCR

HRM: <£0.40 (<\$0.5)

Probe: <£0.50 (<\$0.6)

Moving forwards, work to be done in Malawi

Final Culture Pathways

- Limit of detection (LOD) & limit of quantification (LOQ) work still to be performed
- To finalise culture pathways based on further evaluation in Malawi

Moving forwards, work to be done in Malawi

Sampling strategy – in collaboration with Jillian Gauld, University of Lancaster

- Pilot Study
- Challenges
 - ❖ Road conditions & water access
 - Logistics

Methodology

- Continued optimisation
- Immuno-magnetic separation
 & microfluidics
- Adapt to new challenges from environmental samples

Figure 10: Cumulative map of Typhoid cases with highlighted sampling environmental areas

Likhubula River

Mudi River

Figure 12: Examples of water access on the Likhubula River and walkway through village

Lunzu River

Figure 13: Examples of water access on the Lunzu River

Thuchila River

Figure 14: Examples of water access on the Thuchila River

knowledgements

Dr Nicholas Feasey, LSTM Dr Nicola Elviss, PHE Dr Adam Roberts, LSTM

Collaborators:

Dr Satheesh Nair, PHE
Jillian Gauld, University of
Lancaster
Dr Thomas Edwards, LSTM
Dr Ezzeddine Elmerhebi, Neogen
LabM
Dr Hywel Morgan, University of
Southampton
Dr Marie Chattaway, PHE

