T cell mediated immunity elicited in volunteers following immunization with the live oral *Salmonella* Paratyphi A attenuated vaccine strain CVD 1902

Rezwanul Wahid

Karen L. Kotloff Myron M. Levine Marcelo B. Sztein

Background

- S. Paratyphi A infection (paratyphoid A fever) has emerged as a health problem in enteric disease endemic areas.
- Disease caused by S. Paratyphi A strains showing resistance to multiple clinically-relevant antibiotics are common.
- Well-tolerated effective licensed vaccines are available to prevent S. Typhi disease (typhoid fever) but those do not provide effective cross-protection against paratyphoid A or B fevers.
- Currently no vaccine is available to prevent S. Paratyphi A disease
- Development of a vaccine against S. Paratyphi A is a public health priority.

Candidate vaccines against S. Paratyphi A developed at CVD-Maryland

- Subunit vaccine: S. Paratyphi A O polysaccharide linked to carrier proteins.
- Live oral vaccine: CVD 1902: A wild type S. Paratyphi A strain attenuated by
 - Introducing deletions in the guaBA chromosomal operon (which impairs the biosynthesis of guanine nucleotides).
 - An additional mutation in the clpX gene (encodes a chaperone ATPase) for safety and enhanced expression of flagellar antigen.
 - Pre-clinical study: CVD 1902 immunized mice were protected against intraperitoneal wt-type S. Paratyphi A challenge.
 - Dose-escalating phase 1 clinical trial in healthy adults: Single doses as high as 10⁹ and 10¹⁰ CFU were well tolerated and immunogenic.

Dose-escalating phase 1 clinical trial with CVD 1902 in healthy adults

Study Groups and Vaccine Doses

Cohort	Setting	Vaccine Inoculum size	No. of subjects	
			CVD 1902 vaccine	Placebo
1	Inpatient	10 ⁶ CFU	6	2
2	Inpatient	10 ⁷ CFU	6	2
3	Inpatient	10 ⁸ CFU	6	2
4	Inpatient	10 ⁹ CFU	6	2
5	Inpatient	10 ¹⁰ CFU	6	2

Dose-escalating phase 1 clinical trial with CVD 1902 in healthy adults

- Volunteers were immunized with a single dose of 10⁹ (n=6) or 10¹⁰ (n=6) CFU or placebo (n=4) of CVD 1902
- Blood samples were drawn before (day 0) and 28 days after vaccination
- Purified PBMC were cryo-preserved until used in CMI assays

Experimental Design

Experimental Design

Single (S+) cells : Expressing / producing only one of the functions measured Multifunctional (MF) cells: Concomitantly producing two or more functions

S. Paratyhi A specific CD8+T_{\rm EM} cells

IFN-γ producing T cells

ENTER

FOR VACCINE DEVELOPMENT AND GLOBAL HEALTH

CVD 1902 elicited S. Paratyphi A specific CD8+ T_{EM} Responses

Post-vaccination increase: Post-vaccination (day 28) minus Pre-vaccination (day 0) levels

CVD 1902 elicited S. Paratyphi A specific CD8+ T_{EM} Responses

p=0.02 compared to Placebo, Chi-square test

CD8+ vaccine responders: Volunteers showing post-vaccination increases of ≥0.1% in PA target-specific CD8+ CD69+ T_{EM} cells producing and/or expressing at least 2 functions (IFN-γ, TNF-α, IL-2 and/or CD107a)

Percentage of CD8+ Responders

Comparisons of vaccine elicited responses in CD8+ responders vs non-responders or placebo

Mann-Whitney test, Compared with NR (*, p<0.05; **, p<0.01) or P (#, <0.05, ## p<0.01)

Multifunctional Characteristics of the CVD 1902 CD8+ T_{EM} cell responses in CD8+ responders

*p<0.05 compared to respective S+ cells: Wilcoxon paired test

Gut homing potential of CVD 1902 elicited multifunctional CD8+ T_{EM} cells in CD8 vaccine responders

following immunization with CVD 1902 **CD4+ Vaccine responders Multifunctionality of CD4+ Response** * 80 % of CD4 responders * subset 12.0-70-8.0-60-3/6 3/6 6/12 4.0 **50** · % of CD4+ $T_{\rm EM}$ **40** 3.0 30 2.0-20. 0/2 0/2 1.0-10 0/4 Ð 0 0.0 Þ Ρ D S+ S+ MF S+ MF MF **Cohort** 4 Cohort 5 Combined VR NR Ρ

Induction of multifunctional (MF) CD4+ T_{EM} cells

CD4+ vaccine responders: Volunteers showing post-vaccination increases of $\geq 0.1\%$ in PA target-specific CD4+ CD69+ T_{EM} cells producing and/or expressing at least 2 functions (IFN- γ , TNF- α , IL-2 and/or CD107a)

VD-GLOBAL HEALTH

Comparisons of vaccine elicited CD8+ and CD4+ responses

Summary

- A single dose of either 10⁹ or 10¹⁰ CFU of CVD 1902 elicited S. Paratyphi A specific T effector memory (T_{EM}) responses mediated by both CD8+ and CD4+ T cells in almost two third of the vaccinees
- CVD 1902 induced T-CMI predominately mediated by S. Paratyphi A specific-Multifunctional (MF) cells
- * A significant proportion of CD8+ MF T_{EM} cells expressed the gut homing molecule integrin α 4 β 7
- Cytokine production patterns by both CD8+ and CD4+ cells are suggestive of robust Th1 responses
- Future challenge studies with wt S. Paratyphi A and field studies will establish the importance of these vaccine elicited T memory responses in protection
- These results, together with the observed safety and humoral immunogenicity data elicited by CVD 1902, suggest that a single or multiple doses have the potential to protect against S. Paratyphi A infection

Acknowledgements

Marcelo B Sztein

Cellular Immunology Section

Kirsten Lyke Rosangela Mezghanni Monica McArthur Franklin Toapanta Rekha Rapaka Jayaum Booth

Kaushiki Mazumdar

Regina Harley Cathy Storrer

Haiyan Chen Paula Bernal Xiaochun Wang Ming Bell Jingping Hu Christopher Culbertson Vidya Prasad Jeffrey Floyd

Karen Kotloff Myron M Levine

<u>Clinical Personnel</u> Robin Barnes CVD Staff involved in volunteer recruitment

Volunteers participating in these studies

NIH and NAID for funding

Disclosure: The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsor (NIAID, NIH)

Wahid et al. Clinical Immunology: April 2019, 201; 61-69