Preclinical Evaluation of a *Salmonella* Typhi Polysaccharide Vi-Diphtheria Toxoid (VI-DT) Conjugate Vaccine Candidate Against Typhoid Fever

Fernández S, <u>Soubal JP</u>, Aranguren Y, Santana D, Soroa Y, Romeu B, Garrido R, Hernández M, Acevedo R, Núñez D, Pérez R, Valdés Y, Vérez V, Cardoso D.

Finlay Institute of Vaccines, Havana, Cuba.

Background: Typhoid fever continues to be a major public health problem according with estimates of World Health Organization. Conjugation of polysaccharides to an immunogenic protein revert the Timo independent pattern of polysaccharides to a T-dependent pattern and induce immune response in infants. The aim of this work was to obtain and evaluate a conjugate candidate vaccine against this disease.

Methods: Vi polysaccharide of *Salmonella* Typhi was conjugated to diphtheria toxoid (Vi-DT) via a carbodiimide-mediated reaction. Analytic assays were done to formulations at 10 μ g/ml and 20 μ g/ml. Immunogenicity and protective capacity of conjugates were evaluated in BALB/c or C57BL/6 mice.

Results: All lots of conjugate formulations showed similar characteristics. Vi-DT conjugates were immunogenic in BALB/c mice and the immune response was dose dependent. The addition of at least a 50% of unconjugated Vi to Vi-DT, did not affect the conjugate's immunogenicity. Memory B cell and memory T cell responses after booster dose with a plain polysaccharide vaccine were induced. Conjugates were also protective after challenge with a Salmonella Typhi strain F9 and mucin as virulence inductor in C57BL/6 mice

Conclusions: These results demonstrated that Vi-DT conjugates are immunogenic and protective in animal models, encouraging us to continue the development of a conjugate vaccine against typhoid.