Drivers of Typhoid Fever Transmission in Kathmandu, Nepal: A Mathematical Modelling Study

Neil J. Saad¹, Cayley C. Bowles², Bryan T. Grenfell^{3,4}, Abhilasha Karkey⁵, Amit Arjyal⁵, Sabina Dongol⁵, Buddha Basnyat^{5,6}, Stephen Baker^{6,7,8} Virginia E. Pitzer¹

¹Department of Epidemiology of Microbial Disease, Yale School of Public Health, Yale University, New Haven, CT, United States of America; ²David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America; ³Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States of America; ⁴Fogarty International Center, Bethesda, MD, United States of America; ⁵Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal; ⁶Centre for Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom; ⁷The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; ⁸The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom

Background: A substantial proportion of the typhoid fever burden occurs in South Asia. Kathmandu, Nepal experienced a marked increase in the number of diagnosed *Salmonella enterica* serovar Typhi cases between 2000 and 2003, which subsequently declined but to a higher endemic level than in 2000. This epidemic of *S*. Typhi coincided with the increased occurrence of multi-drug resistant typhoid and, in particular, the emergence of the *S*. Typhi H58 haplotype, but might also have been fuelled by the highly migratory population in Nepal.

Methods: We used a mathematical modelling approach to investigate potential epidemic drivers and fit our mathematical model to weekly data on *S*. Typhi cases between April 1997 to June 2011 and to the age distribution of *S*. Typhi cases. We explored whether the epidemic of typhoid fever in Nepal was driven by (1) heightened levels of migration, (2) the emergence of multi-drug resistant typhoid or (3) a combination of both increased migration and rise in multi-drug resistant typhoid.

Results: Models allowing for the migration of susceptible individuals, alone or in combination with the emergence of multi-drug resistance, provided a good fit to the data. The emergence of multi-drug resistant typhoid alone, either through an increase in disease duration or the transmission rate, could not fully explain the pattern of *S*. Typhi cases.

Conclusions: Our analysis suggests that the epidemics were caused by the migration of susceptible individuals to the capital and possibly aided by the emergence of multi-drug resistant typhoid. This underlines the importance of identifying and targeting migrant populations to prevent disease transmission and infection.