Recent advances in the identification of immunological correlates of protection in a human *S*. Typhi challenge model

Marcelo B. Sztein, M.D.

Immunology Group Center for Vaccine Development University of Maryland

10th International Conference on Typhoid and Other Invasive Salmonelloses

April 5, 2017 - Kampala, Uganda

Vaccine Development The never ending search for the optimal balance

Lack of known immunological correlates of protection in typhoid fever

- Ab to S. Typhi antigens (e.g., Vi, LPS O) are likely to play an important role in defense against typhoid bacilli when they are extracellular.
- In contrast, since S. Typhi persists intracellularly, thereby avoiding destruction by Ab and C', CMI is expected to be essential in eliminating S. Typhi from the infected cells.
- Both adaptive immune mechanisms (CMI & Ab) are expected to provide critical support to innate immunity in the mucosal microenvironment and elsewhere

Key effector CMI to *S.* Typhi in orally immunized subjects (1)

- Effector responses to S. Typhi-infected targets:
 - Cytotoxic T lymphocytes (CTL) activity (⁵¹Cr-release assays; granzyme; CD107 staining by flow cytometry)
 - > **IFN** γ **production** (TNF- α , others)
 - Mediated by both CD8⁺ (dominant) and CD4⁺ cells
 - > CD8+ CTL activity restricted by:
 - Classical class Ia molecules (HLA-A, B, C)
 - Non-classical class-Ib molecules (HLA-E)

Key effector CMI to *S.* Typhi in orally immunized subjects (2)

- Proliferation and predominant type-1 cytokine responses to soluble S. Typhi antigens (e.g., flagella)
 - \blacktriangleright IFN γ , TNF α , IL-10 in the absence of IL-4, IL-5 & IL-6
 - > IFN γ produced predominantly by CD4⁺ cells
- * Homing to mucosal and non-mucosal tissues: IFN-γ production by central and effector memory T subsets that express, or not, the gut homing molecule integrin α_4/β_7
- Presence of long-term multifunctional HLA-E-restricted
 CD8⁺ cells co-expressing IFN-γ, TNF-α and CD107

Over the past 2 decades we demonstrated that immunization of volunteers with *S.* Typhi vaccines elicits complex and heterogeneous CMI responses

However, a key question remains unanswered: which of these CMI responses, if any, are associated with protection from typhoid fever?

Identification of the precise immunological correlates of protection (either mechanistic or non-mechanistic), can:

- 1. Define the effector immunity to be pursued during vaccine development
- 2. Help predict long-term protection
- Accelerate the development of broad spectrum vaccines for enteric fevers (e.g., S. Paratyphi A, S. Paratyphi B) and other enteric infections (e.g., Shigella, ETEC)

To answer this question, and to better understand typhoid disease, we initiated a collaboration with Dr. Pollard and his team at Oxford who have re-established a human challenge model with wild-type S. Typhi (Quailes strain)

Goals of the wt S. Typhi human challenge model

Oxford human wild-type S. Typhi challenge studies (Quailes strain)

Memory & effector T cells

S. Typhi-responsive CD8+ T_{EM} responses: Baseline

EBV, AEH & Blasts combined (low dose)

Higher baseline responses (pre-challenge) are associated with protection

CVD

Post-challenge kinetics of *S.* Typhi-specific CD8+ T_{EM} cell responses differs with clinical outcome

Marked decreases were observed in *S.* Typhi-specific T_{EM} expressing CD107a and producing cytokines following challenge and before the onset of disease

T memory & effector cells: Conclusions

This study provides unique insights into the human immune response during the development of typhoid fever

- Uncovered, for the first time, that S. Typhi-specific CD8 T cell baseline responses correlate significantly with clinical outcome after infection. Higher baseline S. Typhi-specific responses are associated with:
 - Protection from typhoid disease
 - Delayed time to diagnosis in subjects who developed TD
- Demonstrated that multifunctional T cells are likely to play an important role in protection from the development of typhoid disease

Oxford human wild-type S. Typhi challenge studies (Quailes strain)

Regulatory T cells

Gut homing of circulating *S.* **Typhi-responsive** T_{reg}

- S. Typhi-responsive expression of integrin $\alpha 4\beta 7$ is up-regulated on circulating Treg pre-challenge in TD volunteers indicating possible association with disease
- Down-regulation of S. Typhi-responsive integrin $\alpha 4\beta 7$ expression on Treg postchallenge in TD volunteers indicates potential homing to the gut

T regulatory cells: Conclusions

- S. Typhi-specific expression of integrin
 α4β7 is up-regulated pre-challenge in TD
 volunteers
- S. Typhi-specific expression of activation molecules is increased in TD volunteers
- T_{reg} are capable of functionally suppressing S. Typhi-specific responses

Oxford human wild-type S. Typhi challenge studies (Quailes strain)

Antigen Presenting Cells (monocytes, dendritic cells)

Changes in CD38 and CD40 expression

CD38 and CD40 expression was up-regulated in monocytes only in TD subjects

Changes in integrin $\alpha 4\beta 7$ expression

Only monocytes isolated from TD volunteers showed up-regulation of integrin α4β7

Monocytes binding to S. Typhi

- In TD volunteers a spike in *S*. Typhi binding was detected during disease days (2 of 4 volunteers)
- In NoTD volunteers a spike in *S*. Typhi binding was also noted; however, it was present immediately after challenge (D1)

Journal of Translational Medicine

RESEARCH

Open Access

Salmonella Typhi-specific multifunctional CD8+ T cells play a dominant role in protection from typhoid fever in humans

Stephanie Fresnay¹, Monica A. McArthur¹, Laurence Magder², Thomas C. Darton³, Claire Jones³, Claire S. Waddington³, Christoph J. Blohmke³, Brian Angus⁴, Myron M. Levine¹, Andrew J. Pollard³ and Marcelo B. Sztein^{1*}

PLOS | NEGLECTED TROPICAL DISEASES

2015

RESEARCH ARTICLE

Oral Wild-Type *Salmonella* Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease

Franklin R. Toapanta^{1,2}*, Paula J. Bernal^{1,3}, Stephanie Fresnay^{1,3}, Thomas C. Darton⁴, Claire Jones⁴, Claire S. Waddington⁴, Christoph J. Blohmke⁴, Gordon Dougan⁵, Brian Angus⁶, Myron M. Levine^{1,2,3}, Andrew J. Pollard⁴, Marcelo B. Sztein^{1,2,3}*

frontiers in Immunology

ORIGINAL RESEARCH published: 02 March 2017 doi: 10.3389/firmmu.2017.00208

Importance of Salmonella Typhi-Responsive CD8+ T Cell Immunity in a Human Typhoid Fever Challenge Model

Stephanie Fresnay¹, Monica A. McArthur¹, Laurence S. Magder², Thomas C. Darton³, Claire Jones³, Claire S. Waddington³, Christoph J. Blohmke³, Brian Angus⁴, Myron M. Levine¹, Andrew J. Pollard³ and Marcelo B. Sztein¹⁺

RESEARCH ARTICLE

Activation of *Salmonella* Typhi-Specific Regulatory T Cells in Typhoid Disease in a Wild-Type *S*. Typhi Challenge Model

Monica A. McArthur¹, Stephanie Fresnay¹, Laurence S. Magder², Thomas C. Darton³, Claire Jones³, Claire S. Waddington³, Christoph J. Blohmke³, Gordon Dougan⁴, Brian Angus⁵, Myron M. Levine¹, Andrew J. Pollard³, Marcelo B. Sztein¹*

PLOS | NEGLECTED TROPICAL DISEASES

2016

Oral Challenge with Wild-Type Salmonella Typhi Induces Distinct Changes in B Cell Subsets in Individuals Who Develop Typhoid Disease

Franklin R. Toapanta^{1,2}*, Paula J. Bernal^{1,3}, Stephanie Fresnay^{1,3}, Laurence S. Magder⁴, Thomas C. Darton⁵, Claire Jones⁵, Claire S. Waddington⁵, Christoph J. Blohmke⁵, Brian Angus⁶, Myron M. Levine^{1,2,3}, Andrew J. Pollard⁵, Marcelo B. Sztein^{1,2,3}*

A MAIT cell paper is In Press (Front. Immunol.)
 Correlation of all data to evaluate whether a single response can be a CoP (best case scenario) or a combination of immune responses is more indicative of short and long-term protection than individual responses

Balancing the immune response

Balancing the immune response

Host HLA and other genetic factors, nutrition, microbiota, etc

Overall Conclusion

Identifying effective immunological CoP and their kinetics and homing among a multitude of non-protective or downregulatory immune responses might hold the key for the development of new generations of more effective vaccines against infectious diseases

Acknowledgements

Center Vaccine Development, UMB Immunology Group Stephanie Fresnay (Teff/mem) Monica McArthur (Treg) Franklin Toapanta (B, APC) Rosangela Mezghanni (MAIT) Jay Booth Rezwan Wahid Paula Bernal Mark Rudolph Cathy Storrer **Regina Harley**

Dept. Epidemiology, **Biostatistics**, UMB

Larry Magder

CVD

UK Collaborators

Andrew J Pollard Claire Jones **Claire Waddington** Thomas Darton Christoph Blohmke Gordon Dougan Jeremy Farrar Paul Langford **Brian Angus Derrick Crook** Stephen Lockhart

Imperial College London

» wellcome^t

Oxford Biomedical Research Centre

Clinical studies

Myron Levine

Haiyan Chen

Supported by grants U19 AI082655 (UM-CCHI) & R01 AI-36525 from the NIH and by the Wellcome Trust