Progress in typhoid epidemiology

John A. Crump, MB ChB, MD, DTM&H McKinlay Professor of Global Health

10th International Conference on Typhoid and Other Invasive Salmonelloses 4 April 2017

Centre for International Health

Overview

- Mode of transmission and sources
 - Evidence and importance
- Burden of disease
 - Current estimates and trends
 - Extrapolation, uncertainty, and data gaps
 - Severe disease and death
 - Occurrence by age

Modes of transmission

Chain of infection

Mode of transmission in aggregate

- Mogasale systematic review and meta-analysis association between unimproved water and typhoid fever
 - Persons with unimproved water have 2.4 times odds of typhoid fever compared with those with improved water
 - Aggregating empiric studies is informative
- WHO Foodborne Diseases Epidemiology Reference Group Source Attribution Task Force, structured expert elicitation using Cooke's Classical Method
 - Water: 0.33-0.57
 - Food: 0.08-0.49
 - Other: 0.11-0.47

Mode of transmission locally

- Foodborne
 - Restaurant-associated outbreaks linked to chronic carriage in food handler in countries where typhoid is rare e.g., Colorado, United States
- Waterborne
 - Municipal water supplies e.g., Kathmandu, Nepal
- Waterborne and foodborne
 - Consuming surface water and produce grown in pit latrine seepage e.g., Central Division, Fiji

Role of infection class on transmission

- Fecal shedding classes following onset of acute illness
 - Acute shedding: <3 months</p>
 - Convalescent carriers: ≥3-12 months
 - Chronic carriers: >12 months
- Things that we 'know'
 - At low force of infection a larger proportion of acute typhoid is in age groups more susceptible to becoming chronic carriers
 - As acute typhoid infections approach zero the role of chronic carriers as the reservoir approaches 100%
 - Much to learn

History of published estimates of typhoid burden

	Year									
Metrics	1980	1996	2000	2010	2010	2010	2010	2013	2015	2015
Origin	WHO	WHO	US CDC	IVI	JHU	WHO	IHME	IHME	IHME	Yale
Coverage	Global, except China	Global	Global	LMIC, unadjusted	Global	Global	Global, including paratyphoid	Global	Global	LMIC
Illnesses (millions)	12.5	16.0	21.7	20.6	26.9	20.1	-	11.0	12.5	17.8
DALYs (thousands)	-	-	-	-	-	10,292	12,239	11,128	10,576	-
Deaths	-	600,000	216,510	223,000	-	144,890	190,200	160,700	148,800	-

Global population, 1980-2015

Global population and typhoid illness estimates 1980-2015

Global population and typhoid illness estimates 1980-2015

Global population and typhoid illness estimates 1995-2015

Typhoid incidence and deaths 1995-2015

Extrapolation, uncertainty, and data gaps

- Improvements in methods for extrapolation
- Estimating uncertainty
- Data gaps
 - Areas and age groups needing incidence data
 - More and better data on disability and death
 - The 'hidden' problem in Oceania

Change in improved drinking water coverage by region, 1990 to 2015

Typhoid fever in infants and young children aged <2 years

William Budd, b. 14 Sep 1811, d. 9 Jan 1880

Role of infection class in transmission

- Things that we would like to know more about
 - Proportion stool cultures positive in acute disease vs. chronic carriage
 - Concentration of Salmonella Typhi in feces in acute disease vs. chronic carriage

Distribution of typhoid fever by age group at various incidence levels, 2000

Crump JA, et al. Bull World Health Organ 2004; 82: 346-53

Typhoid fever DALYs and deaths by age Global Burden of Disease 2015

http://vizhub.healthdata.org/gbd-compare/

Social inequity

- High-income countries
 - Declined following increased access to safe water and food in urban areas
 - Disease of travelers, beneficiaries of typhoid vaccines
- Low- and middle-income countries
 - Poor sanitation, unsafe water and food
 - Crowding
 - Limited access to vaccines

Acute disease and chronic carriage as reservoir

Deaths by cause and age, Hamburg, Germany, 1872-1900

Sedgwick WT, et al. J Infect Dis 1910; 7: 490-564

Improved drinking water coverage, global, 2015

UNICEF and WHO. 2015

Data inequity

- High-income countries
 - Laboratory confirmation
 - Notifiable disease with high reporting
 - Robust data
- Low- and middle-income countries
 - Dependence on clinical diagnosis
 - Weak surveillance with low reporting
 - Poor quality routine data
 - Special studies

Moving targets for vaccine

- Person, place, and time
 - Vaccination of 'high risk groups and populations' based on 'local epidemiologic situation'
 - Who should be vaccinated and where?
- Age
 - 'Immunization of school-age and/or preschool-age children'
 - Typhoid conjugate vaccines can protect below 2 years of age
 - At what age should we vaccinate to prevent the most disease?

Global distribution of typhoid fever, 2000 vs. 2010

Salmonella enterica bloodstream infections, Queen Elizabeth Central Hospital, Blantyre, Malawi, 1998-2014

Feasey NA, et al. Clin Infect Dis 2015; 61 (suppl 4): S363-71

Conclusions

- Current typhoid fever estimates are remarkably consistent, improving with
 - New data
 - Better extrapolation and modeling
- Data are weakest in areas with most disease
 Complications and death
- Typhoid fever incidence varies in person, place, and time

 Targeting vaccine is challenging
 - Need to understand more about disease in infants and young children

Role of infection class in transmission

- Fecal shedding classes following onset of acute illness
 - Acute shedding: <3 months</p>
 - Convalescent carriers: ≥3-12 months
 - Chronic carriers: >12 months
- Things that we 'know'
 - At low force of infection a larger proportion of acute typhoid is in age groups more susceptible to becoming chronic carriers
 - As acute typhoid infections approach zero the role of chronic carriers as the reservoir approaches 100%

Role of infection class in transmission

- Things that we would like to know more about
 - Proportion stool cultures positive higher in acute disease vs. chronic carriage?
 - Concentration of Salmonella Typhi in feces higher in acute disease vs. chronic carriage?
 - Chronic carriers (when positive): 10⁶-10¹⁰ CFU/g (Merselis)
 - <10²-10⁷ (Thomson)