A case-control investigation into the household distribution of invasive Salmonellae in Blantyre, Malawi

Malawi-Liverpool-Wellcome Trust
Clinical Research Programme

Melita Gordon
Reenesh Prakash
Uncertain functional host adaptation of ST313 and other iNTS serovars and clades

127 index invasive disease iNTS
32/467 (family contacts carried Salmonella, 65% matched index by PFGE)
4 environmental isolates also similar, but very few animal isolates

Dione et al, Gambia PLOS NTD 2011
GEMS 14 NTS cases (8 diarrhoea, 6 healthy controls)
210 household animals (chicken, sheep goat)
21 animal NTS isolates (10%), MLST and serotyping
no sequence type overlap between human enteric and animal isolates

Nyirenda et al unpublished, Malawi 2014-15
60 healthy children aged 6-18 months sampled every month
~30% healthy children carried culture positive NTS short-term (higher by molecular)
Of these, 50% were Salmonella Typhimurium ST313
International consensus meeting on Invasive Salmonella Disease

November 2014, MLW, Malawi
Case control study of reservoirs of invasive Salmonella disease

Objectives

• Identify household shedding and household environmental reservoirs of invasive Salmonellae within Blantyre

• Compare invasive to human, animal and environmental strains using whole genome sequencing

• Information to inform control strategies for Salmonella infections in Africa
Recruitment and sampling

Index Case identification at QECH (Typhi + NTS)
60 cases
60 controls
URBAN

Visit case household within 2 weeks
Select Control household by bottle-spin and 100 yard walk
Obtain Consents

Conduct Sampling at Homes
Family Animals Environment

Culture and identification
WGS
<table>
<thead>
<tr>
<th>Household (HH)</th>
<th>iNTS Household</th>
<th>S.Typhi Household</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case n=27</td>
<td>Control n=27</td>
</tr>
<tr>
<td>Median (IQR) or %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HH members</td>
<td>5 (5-7)</td>
<td>4 (3-6)</td>
</tr>
<tr>
<td>No. of rooms</td>
<td>4 (3-5)</td>
<td>3 (2-4)</td>
</tr>
<tr>
<td>HH keeps animals %</td>
<td>32</td>
<td>12</td>
</tr>
<tr>
<td>Has bathroom %</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Walls unbaked mud %</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Walls baked mud %</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Walls plastered %</td>
<td>84</td>
<td>56</td>
</tr>
<tr>
<td>Tin roof %</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>Socioeconomic and sanitation</td>
<td>iNTS Household</td>
<td>S.Typhi Household</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Case n=25</td>
<td>Control n=25</td>
</tr>
<tr>
<td>Socioeconomic:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity supply %</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>HOH can read & write %</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>Sanitation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pit latrine no slab %</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>Pit latrine with slab %</td>
<td>52</td>
<td>48</td>
</tr>
<tr>
<td>Flush toilet %</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>No. sharing toilet</td>
<td>9 (7-18)</td>
<td>9 (5-13)</td>
</tr>
<tr>
<td>Soap Available %</td>
<td>56</td>
<td>48</td>
</tr>
<tr>
<td>Drinking water</td>
<td>iNTS Household</td>
<td>S.Typhi Household</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Case n=25</td>
<td>Control n=25</td>
</tr>
<tr>
<td>Piped into house %</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Piped into plot %</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>Public tap or standpipe %</td>
<td>48</td>
<td>68</td>
</tr>
<tr>
<td>Public bore hole %</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Other %</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water Treatment used %</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
Sampling
- **Stool** (Human, adults and children)
- **Animal stool/rectal swabs** (chickens, pigs, cows, goats, sheep, cats, dogs, gecko)
- **Sterile boot sox** - perimeter, latrine, rubbish, bedroom, cooking areas
- **Water** (Stored, puddles, vessels)
- **Food** (left over)
Human Stool

Environmental Sample

- Enrichment BPW @ 37°C 18 – 24h
- Selective Selenite Broth @ 37°C 18 – 24h
- XLD @ 37°C 18 – 24h
- Colonies ID’d
 - Serology & API 20E
- Confirmed Salmonella for WGS

Water

- Filtered
- BPW @ 37°C 18 – 24h
- Selective RV Broth @ 37°C 18 – 24h
- Re-incubate Selective Selenite Broth @ 37°C 18 – 24h
<table>
<thead>
<tr>
<th>Total samples</th>
<th>Case Total Samples</th>
<th>No. of Salmonella Isolated</th>
<th>% Positive</th>
<th>Control Total Samples</th>
<th>No. of Salmonella Isolated</th>
<th>% Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Stool</td>
<td>273</td>
<td>11</td>
<td>4</td>
<td>282</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Animal Rectal Swab</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Animal Stool</td>
<td>32</td>
<td>2</td>
<td>6</td>
<td>34</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Bootsocks</td>
<td>305</td>
<td>6</td>
<td>2</td>
<td>297</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>Food</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water</td>
<td>108</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>802</td>
<td>19</td>
<td>2.4</td>
<td>708</td>
<td>30</td>
<td>4.2</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Case Total</td>
<td>Case no. Salmonella Isolated</td>
<td>Case % Positive</td>
<td>Control Total</td>
<td>Control no. Salmonella Isolated</td>
<td>Control % Positive</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Human Stool</td>
<td>273</td>
<td>11</td>
<td>4</td>
<td>282</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Animal Rectal Swab</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Animal Stool</td>
<td>32</td>
<td>2</td>
<td>6</td>
<td>34</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Bootsocks</td>
<td>305</td>
<td>6</td>
<td>2</td>
<td>297</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>802</td>
<td>19</td>
<td>2.4</td>
<td>708</td>
<td>30</td>
<td>4.2</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Case Total Samples</td>
<td>No. of Salmonella Isolated</td>
<td>% Positive</td>
<td>Control Total Samples</td>
<td>No. of Salmonella Isolated</td>
<td>% Positive</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
<td>----------------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Human Stool</td>
<td>157</td>
<td>2</td>
<td>1.3</td>
<td>121</td>
<td>4</td>
<td>3.3</td>
</tr>
<tr>
<td>Animal Rectal Swab</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>16.7</td>
</tr>
<tr>
<td>Animal Stool</td>
<td>14</td>
<td>2</td>
<td>14</td>
<td>17</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Bootsocks</td>
<td>168</td>
<td>5</td>
<td>3</td>
<td>166</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>442</td>
<td>9</td>
<td>2</td>
<td>394</td>
<td>23</td>
<td>5.8</td>
</tr>
</tbody>
</table>
iNTS: households and controls (26 + 26)

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Case Total Samples</th>
<th>No. of Salmonella Isolated</th>
<th>% Positive</th>
<th>Control Total Samples</th>
<th>No. of Salmonella Isolated</th>
<th>% Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Stool</td>
<td>116</td>
<td>9</td>
<td>8</td>
<td>97</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Animal Rectal Swab</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Animal Stool</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bootsocks</td>
<td>137</td>
<td>1</td>
<td>1</td>
<td>131</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Food</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>42</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>360</td>
<td>10</td>
<td>2.8</td>
<td>314</td>
<td>7</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Summary of isolation rates

- Multiple serovars isolated across the physical and living household environment

 3% overall isolation by culture
 Isolation 4% human, 6% animals, 5% soil

- No isolates from food or water – sampling / methodological
Predicted serovar

- Aberdeen
- Agoue|Cubana
- Amager
- Djama
- Gaminara
- Hadar
- Havana|ll 1,13,22:g.t:[1,5]
- II 40:b:-
- II 42:r:-|llb 42:r:-:[z50]
- Mguani
- Montevideo
- Ogbe|ll 43:z:1,5
- Senftenberg
- Typhimurium

Illumina sequencing
Enterobase phylogenetic trees
(S. Typhi blood stream isolates not included)
Predicted serovar

- Aberdeen
- Agouevecubana
- Amager
- Djama
- Gaminara
- Hadar
- HavanaII 1,13,22:g:t[1,5]
- II 40:b:-
- II 42:r:-IIlb 42:r:-[z50]
- Mgulani
- Montevideo
- OgbeteII 43:z:1,5
- Senftenberg
- Typhimurium

Bootsox house areas (controls)
- latrine, cooking area, bedroom, perimeter, rubbish tip

Bootsox house areas (cases & controls)
- latrine, cooking area, bedroom, perimeter, rubbish tip

Boot sox samples
Predicted serovar
- Aberdeen
- Agoueve/Cubana
- Amager
- Djama
- Gaminara
- Hadar
- Havana [II 1,13,22: g, t: [1,5]
- II 40:b:-
- II 42:r:- [IIIb 42:r:- [z50]
- Mgulani
- Montevideo
- Ogbete [II 43:z: 1,5
- Senftenberg
- Typhimurium

* Animal isolate
Predicted serovar

- Aberdeen
- Agoueve/Cubana
- Amager
- Djama
- Gaminara
- Hadar
- Havana/II 1,13,22:g,t:[1,5]
- II 40:b:-
- II 42:r:-/IIIb 42:r:-:[z50]
- Mgulani
- Montevideo
- Ogbele/II 43:z:1,5
- Sentfenberg
- Typhimurium

* Animal isolate
Predicted serovar

- Aberdeen
- Agoueve|Cubana
- Amager
- Djama
- Gaminara
- Hadar
- Havana||1,13,22:g,t:[1,5]
- II 40:b:-
- II 42:r-||IIIb 42:r-:z50
- Mguiani
- Montevideo
- Ogbele||43:z:1,5
- Senftenberg
- Typhimurium

Mixing of human and animal carried serovars
Predicted serovar

- Aberdeen
- Agoueve|Cubana
- Amager
- Djama
- Gaminara
- Hadar
- Havana|ll 1,13,22:g:t:[1,5]
- Il 40:b:-
- Il 42:r:-|ll|b 42:r:-:[z50]
- Mgulani
- Montevideo
- Ogbe|l|l 43:z:1,5
- Senftenberg
- Typhimurium

★ Adult stool
★ Child stool
★ Animal isolate
★ Boot sox isolates
Summary & conclusions

- iNTS and Typhoid case-control study – human, animal and environmental, urban slum setting

- Multiple serovars isolated across the physical and living household environment
 3% overall isolation by culture
 Isolation rate 4% human, 6% animals, 5% soil
 No isolates from food or water – sampling and methodological issues

- Clear overlap between asymptomatic human and animal serovars

- A phylogenetic ST313 match found only with family members (1 adult, one child)

- Supports (but does not prove) mainly human reservoir or iNTS
- Supports (but does not prove) human to human transmission of iNTS
Thank you

MALAWI
Reenesh Prakash
Leonard Koolman
Franziska Olgemoeller
Rose Nyirenda
Brigitte Denis

LIVERPOOL
Chisomo Msefula
Nick Feasey
Paul Wigley
Jay Hinton
Sian Jones

Chisomo Msefula
Robert Heyderman