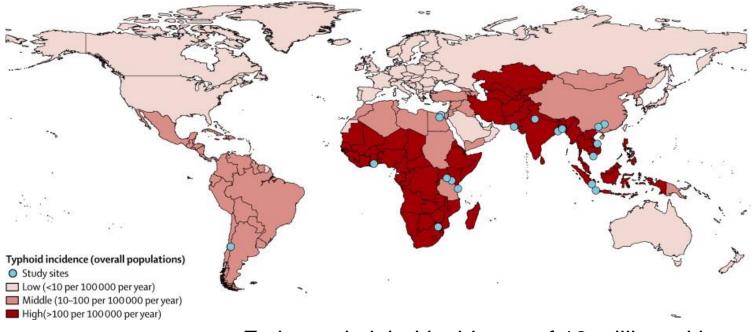
COMPARISON OF STRATEGIES AND THRESHOLDS FOR VI CONJUGATE VACCINES AGAINST TYPHOID FEVER: A COST-EFFECTIVENESS MODELING STUDY


Stanford University

Nathan C. Lo, Ribhav Gupta, Jeffrey Stanaway, Denise Garrett, Isaac Bogoch, Stephen Luby, and Jason Andrews

MD/PhD Candidate, Epidemiology Division of Infectious Diseases and Geographic Medicine Stanford University School of Medicine

10th International Conference on Typhoid and Other Invasive Salmonelloses Kampala, Uganda April 4-6, 2017

Burden of typhoid fever

Estimated global incidence of 12 million with annual mortality of 130,000

Stanford University

Mogasale V. et al., Lancet Glob Health

A new global strategy for typhoid fever?

- Current global public health strategy relies on passive surveillance
 - Older vaccinations have significant limitations
- New generation typhoid conjugate vaccines presents opportunity
 - Potential >90% efficacy
 - Longer duration of immunity
 - Immunogenic in young children (<5 years)
- Increasing antimicrobial resistance with higher mortality may influence decision

Study questions

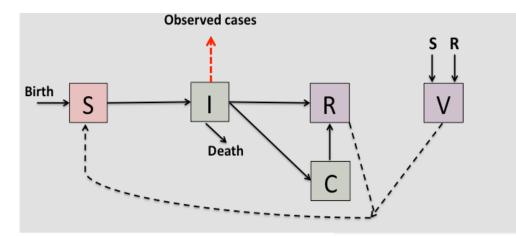
- 1) What is the health impact of typhoid conjugate vaccines implemented in routine EPI programs with or without school catch-up campaigns?
- 2) What are the cost-effective incidence thresholds for delivery of these vaccines?
- 3) What will the impact of rising drug resistance and associated mortality be on the value of these vaccines?

Methods

Methodological approach

Modeling approach

- Age-structured natural history and dynamic transmission model
- Cost-effectiveness analysis


Data sources

- Meta-analysis of global typhoid burden
- Global burden of disease
- Natural history data from literature

Tested treatment strategies (10 year time horizon)

- Integration with Expanded Program on Immunization (EPI)
 - Routine immunization (<1 year)
 - 85% coverage
- EPI + school catch-up campaign
 - Routine EPI + school aged children (5-14 years)
 - 75% coverage

Dynamic transmission model

- S- Fully susceptible
- I- Infected
- C- Carrier
- R- Recovered (immune)
- V- Vaccinated (immune)
- W- Water in environment

Modeling approach:

- Age-structured
- Transmission (2 sources)
 - Short-cycle (person-to-person)
 - Long-cycle (public water supply)
- Sub-clinical infection
- Long-term carriage
- Waning immunity
- Rule of parsimony
- Model comparisons

Cost-effectiveness analysis

Incremental cost-effectiveness ratio (ICER)

- Compares two strategies
- Lower ICER is more cost-effective

ICER calculation

- Cost: 2016 US\$ (Societal perspective)
- Effectiveness: Disability adjusted lifeyears (DALYs)
- Highly cost-effective: ICER< \$1035 (GDP per capita of low-income country)
- Cost-effective: ICER < 3x GDP per capita

$$ICER = \frac{Cost \, difference}{DALYs \, averted}$$

Disability and mortality, cost, and vaccination

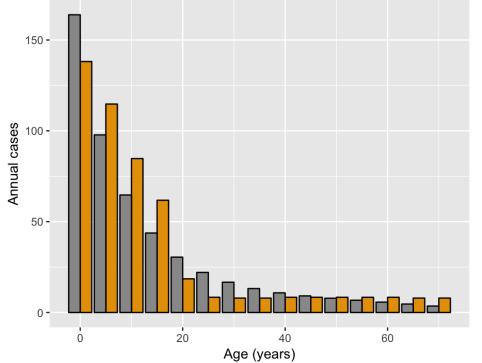
Disability and mortality inputs for model

	Case-	Disability
Disease state	years	weight
Acute infectious disease,		
moderate	35%	0.05
Acute infectious disease,		
severe	48%	0.13
Abdominal pain and		
distension ^a	17%	0.32
Gastrointestinal bleeding	<1%	0.33
Mortality	1%	
•		

^aIncludes intestinal perforation

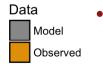
Typhoid conjugate vaccine assumptions

- 91% efficacy
- 20 year immunity duration

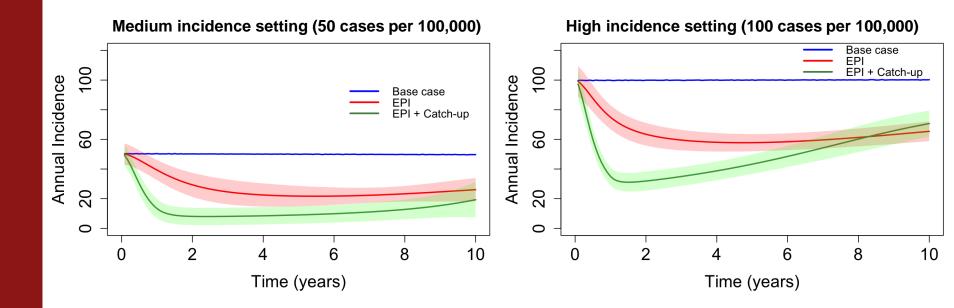

Cost inputs for model

Parameter	Base
	case
Typhoid conjugate vaccine (per dose)	\$ 2.50
EPI-based delivery (per dose)	\$ 0.50
School catch-up delivery (per dose)	\$ 1.00
Total cost for EPI (per child)	\$ 6.00
Total cost for catch-up (per child)	\$ 7.00
Vaccine coverage (%)	75-85
EDI: Expanded Program on Immunization	

EPI; Expanded Program on Immunization


Results

Model calibration

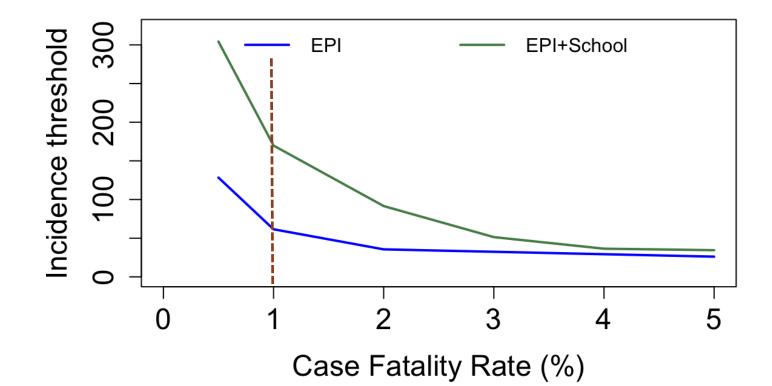

Main points:

 Transmission model was fit to age distribution

- Model was fit across low, medium, and high incidence settings
- Model reproduced data

Typhoid vaccination may substantially reduce incidence

EPI; Expanded Program on Immunization


Conjugate vaccines highly cost-effective in medium incidence setting

EPI vaccination strategy → highly cost-effective in medium incidence settings (>50 cases per 100,000)

EPI vaccination + school catch-up campaign → highly cost-effective in high incidence settings (>150 cases per 100,000)

Analysis used a willingness-to-pay optimized for low-income country

Antimicrobial resistance may affect incidence thresholds

Limitations

- Substantial country-specific heterogeneity, uncertainty around typhoid biology, and constraints of common modeling assumptions
- General relationship between incidence and age distribution of typhoid cases
- Economic threshold (willingness-to-pay) may vary for countries; contextor budget-specific analyses can be done
- Vaccine cost and mortality are influential parameters

Conclusion

- Typhoid Vi conjugate vaccines through EPI may be highly cost-effective in moderate incidence settings (50 annual cases per 100,000).
- Typhoid vaccination through EPI with school catch-up campaign may be highly cost-effective in high incidence settings (150 annual cases per 100,000).
- These results were sensitive to case fatality rates, underscoring the need to consider rising antimicrobial resistance in vaccine decision making.

Acknowledgements

Senior investigator: Jason Andrews, MD

Key collaborators

Ribhav Gupta Jeffrey Stanaway, PhD Denise Garrett, MD Isaac Bogoch, MD Stephen Luby, MD

Funding to Nathan C. Lo:

Medical Scientist Training Program (MSTP)

- National Institutes of Health
- Stanford School of Medicine

National Institutes of Health

Contact: Nathan.Lo@stanford.edu

Conclusion

- Typhoid Vi conjugate vaccines through EPI may be highly cost-effective in moderate incidence settings (50 annual cases per 100,000).
- Typhoid vaccination through EPI with school catch-up campaign may be highly cost-effective in high incidence settings (150 annual cases per 100,000).
- These results were sensitive to case fatality rates, underscoring the need to consider rising antimicrobial resistance in vaccine decision making.