PREVENTING TYPHOID FEVER

Safe water
• Typhoid is a waterborne disease and the main preventive measure is to ensure the access to safe water

Food safety
• Contaminated food is a major vehicle for typhoid transmission

Sanitation
• Proper sanitation contributes to reducing the risk of transmission of diarrheal and enteric pathogens

Health education
• Health education is paramount to raise public awareness on all preventive methods

→ These all remain as long-term preventive measures, especially in developing countries

Vaccination
 Safe and efficacious vaccines are available

→ Potential short- to mid-term solution in developing countries
SAFE WATER

Typhoid Fever Trends (mortality per 100,000) in Four US Cities, 1900-36

© Bill & Melinda Gates Foundation
IMPROVED SANITATION

FOOD SAFETY
LICENCED TYPHOID VACCINES: UNDER-UTILIZED

Ty21a live oral strain
- Enteric coated capsules (3 or 4 doses)
- Sachet formulation (liquid suspension) (3 doses)
- Licensed for use in persons over two years of age (liquid)

Purified Vi polysaccharide parenteral vaccine
- Single dose
- Licensed for use in persons over two years of age
CHARACTERISTICS OF CURRENT TYPHOID VACCINES

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Live attenuated Ty21a</th>
<th>Vi capsular polysaccharide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine type</td>
<td>Live attenuated</td>
<td>Subunit</td>
</tr>
<tr>
<td>Composition</td>
<td>Chemically-mutated Ty2 strain of S. Typhi</td>
<td>Purified Vi capsular polysaccharide of the Ty2 S. Typhi strain</td>
</tr>
</tbody>
</table>
| Immunogenic properties | • Elicits mucosal IgA and serum IgG antibodies against O, H and other antigens, as well as cell-mediated responses
• No booster effect has been shown
• Not immunogenic in infants and toddlers* | • Elicits serum IgG Vi antibodies
• T-cell independent (no booster response) |
| Route of administration | Oral | Parenteral (subcutaneous or intramuscular) |
| Formulation | Enteric-coated capsules, or Liquid suspension (lyophilized vaccine + buffer mixed with water upon use) | Solution of 25 µg combined with buffer |

From Acosta et al. Expert Opinion on Biological Therapy, 2004; Murphy et al. Infection and Immunity, 1991
CHARACTERISTICS OF CURRENT TYPHOID VACCINES

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Live attenuated Ty21a</th>
<th>Vi capsular polysaccharide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum age vaccine is licensed for use</td>
<td>Two years old for liquid formulation and five years old for capsule formulation</td>
<td>Two years old</td>
</tr>
<tr>
<td>Number of doses required for complete vaccine regimen</td>
<td>Three to four</td>
<td>One</td>
</tr>
<tr>
<td>Storage requirements</td>
<td>Requires storage at 2º to 8ºC</td>
<td>Requires storage at 2º to 8ºC</td>
</tr>
<tr>
<td>Shelf life in higher temperature</td>
<td>14 days at 25 ºC</td>
<td>6 months at 37 ºC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 years at 22 ºC</td>
</tr>
<tr>
<td>Safety/tolerability</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Efficacy at 3 years (95% CI)</td>
<td>51% (36%, 62%)</td>
<td>55% (30%, 70%)</td>
</tr>
<tr>
<td>Length of protection</td>
<td>At least 5-7 years</td>
<td>At least 3 years</td>
</tr>
<tr>
<td>Ability to induce herd protection</td>
<td>Documented^</td>
<td>Documented^</td>
</tr>
</tbody>
</table>

Acosta et al. Expert Opinion on Biological Therapy, 2004; *Fraser et al. Vaccine, 2007;
^Levine et al. Vaccine, 1999; ^Sur et al. New England Journal of Medicine, 2009
Two typhoid vaccines are currently recommended for use:

- an injectable polysaccharide vaccine based on the purified Vi antigen (known as Vi-PS vaccine) for persons aged two years and above
- a live attenuated oral Ty21a vaccine in capsule formulation for those over five years of age

Immunization of school-age and/or preschool-age children is recommended in areas where typhoid fever in these age groups is shown to be a significant public health problem, particularly where antibiotic-resistant S.typhi is prevalent. The selection of delivery strategy (school or community-based vaccination) depends on factors such as the age-specific incidence of disease, subgroups at particular risk and school enrolment rates, and should be decided by the concerned countries…

WHO recommends the use of the Vi-PS and Ty21a vaccines to control endemic disease and for outbreak control.

WHO further recommends that all typhoid fever vaccination programmes should be implemented in the context of other efforts to control the disease, including health education, water quality and sanitation improvements, and training of health professionals in diagnosis and treatment.

• High incidence of typhoid fever in the region.
• Substantial regional variation in incidence.

• High incidence in urban slums; rates similar to those from Asia.
• Lower burden in rural children from Ghana (and Lwak, Kenya), compared to urban areas; regional differences
New Vi-conjugate vaccines licensed locally:
• Bharat (Vi-tetanus toxoid), India
• Bio-Med (Vi-TT), India
• Lanzhou Institute BP (Vi-rEPA) pending in China

WHO position paper on production and evaluation of Vi-conjugate vaccines
GAVI position is awaiting WHO pre-qualification of a Vi-conjugate vaccine
Global spread of new antibiotic resistant clones (FQ)

Significant uncertainties about typhoid vaccines that must be addressed to inform policy
TYPHOID CONJUGATE VACCINE PIPELINE

1. Technology transfer from SBVGH
2. Technology transfer from IVI
VI-rEPA CONJUGATE VACCINE (DEVELOPED BY NIH)

A double-blind, placebo-controlled and randomized efficacy study was conducted in 2 to 5 year-old children in Vietnam

- 11,091 children were injected twice, 6 weeks apart, with the Vi-rEPA vaccine or saline placebo
- Efficacy at 27 months of active surveillance was 91%
- Efficacy at 46 months after additional 19 months of passive surveillance was 89%

A second study was conducted with 301 infants who received Vi-rEPA with routine childhood vaccines at 2, 4, 6 months and Hib or Vi-rEPA at 12 months in Vietnam

- Vi-rEPA was safe in infants
- Induced protective anti-Vi levels, with robust GMTs
- Compatible with EPI vaccines and it can be used in infants.

<table>
<thead>
<tr>
<th>TABLE 3. Efficacy of Vi-rEPA Conjugate Vaccine.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIABLE</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Children who received two correctly labeled injections — no.</td>
</tr>
<tr>
<td>Children with typhoid fever — no.</td>
</tr>
<tr>
<td>Attack rate (cases/1000 children)</td>
</tr>
<tr>
<td>All children — no.‡</td>
</tr>
<tr>
<td>Children with typhoid fever — no.</td>
</tr>
<tr>
<td>Attack rate (cases/1000 children)</td>
</tr>
</tbody>
</table>

This trial is the source of the only existing efficacy data for any typhoid conjugate vaccine, which has implications for future clinical development and regulatory pathways

Vi-CRM\textsubscript{197} CONJUGATE VACCINE (SBVGH & BIO-E)

Anti-Vi ELISA GMC of antibody by vaccine group, age, and country

- Randomized, observer-blind, age de-escalation Phase II study in Philippines and Pakistan
 - Adults aged 18-45 years, children 24-59 months, older infants 9-12 months, infants 6-8 weeks
 - One dose significantly increased anti-Vi Ab concentration in adults, children and older infants
 - In children and older infants, second dose of vaccine had no incremental effect on Ab titres,
 - Ab concentrations increased significantly 6 mo. after vaccination, in all age groups

- Relatively modest responses in infants, observed decline in antibody titres overall similar to that seen with Vi-PS

- Bio-E working on Vi-CRM\textsubscript{197} construct following technology transfer from SBVGH

Optimized Vi production during growth in a fermentor

Developed a novel Vi capsular polysaccharide purification process

Developed an efficient high yielding conjugation process

Production and Quality Control SOPs - developed training plan

Transferred technology to 4 manufacturers

Shantha Biotechnics – cancelled the project
SK chemicals – clinical trials to begin soon
Biofarma – preclinical development almost complete
Incepta – early stages of preclinical development
Indian Immunologicals – pending
IVI PROCESS DEVELOPMENT (VI-DT)

Process development:
- High yielding antigen production
- High recovery purification process
- Scalable process compatible with cGMP production

Technology Transfer:
- High standards for quality, strict adherence to cGMP
- Manufacturer(s) committed to low cost production and low margin sales
- Developing Country Vaccine Manufacturers
 Manufacturers with capacity to WHO pre-qualify products

Source of photographs: Rodney Carbis, IVI
TYPHOID CONJUGATE VACCINE (VI-TT)

- Bharat Biotech vaccine licensed in India in 2013 on immunogenicity data
- Phase III - RCT in ages 2 - 45 year olds using licensed Typbar (Vi-PS) as an active comparator
- Open Label Trial in 6 months – 2 year olds
- Good immunogenicity responses across all age groups
- Post-licensure studies ongoing, including measles co-administration; evaluation of different dosing schedules; two years follow up for safety and immunogenicity data
- Human challenge study is ongoing at Oxford University to assess a clinical outcome for the vaccine

Immune Response Across Age Groups

Licensure on the basis of immunogenicity based on the Vi-rPA Vaccine Efficacy Data

1. Need a validated ELISA assay
 • Measures the concentration of anti-Vi IgG in human serum sample

2. Need a valid human reference standard to measure serum anti Vi-IgG
 • Will facilitate comparison of anti-Vi elicited from other manufactures to those of an experimental vaccine manufactured by the NIH (Vi-rPA) that has already undergone a clinical trial with efficacy outcomes
 • Allows for comparisons between laboratories
 - enables the comparison of antibodies elicited from other manufactures to those of Vi-rPA
 • Vi IgG antibody levels are currently being measured by investigators and referenced against arbitrarily-determined EU values assigned by each laboratory against its own in-house standard serum.
TYPHOID CHALLENGE MODELS

- Determine the dose of *Salmonella Typhi* required to produce an AR of 60-75%
- Clinical and laboratory features
- Time course
- Bacteraemia
- Inflammatory response
- Development of immunity
- Innate & humoral
- Cell mediated immunity
- Long-term immunity after treatment
- Diagnostics
- PCR-based
- Mass spectrometry
- Variation in genomic response
- Research mechanisms for related pathogens
- Correlates of protection

VACCINE STUDIES

Challenge dose
- 10^3 CFU
- 10^4 CFU

Cumulative percentage with typhoid diagnosis (any method)

Number days after challenge

© Bill & Melinda Gates Foundation
EXPECTED ADDITIVE BENEFITS OF TYPHOID CONJUGATE VACCINES

• Improved level and duration of clinical protection
• Should boost Vi-primed immune memory (natural or plain Vi vaccine)
• Broader target age range (i.e., immunogenic in children <2 years)
• Potential for simplified delivery strategies (integration into routine schedule vs. school-based or campaign programs)
• Improved cost-effectiveness
• Improved vaccine acceptance and uptake