Understanding transmission of invasive non-typhoidal *Salmonella*

Dr Karen H. Keddy Centre for Enteric Diseases National Institute for Communicable Diseases

Salmonella taxonomy

Species	S. enterica						S. bongori (V)
Subspecies	enterica (I)	salamae (II)	arizonae (IIIa)	<i>diarizonae</i> (IIIb)	houtenae (IV)	indica (VI)	
Usual habitat	Warm blooded animals		Cold-blooded animals and environment				
0.00	0						

- >2600 serovars
- New serovars emerging
- Well-described host-specificity, but some serovars may be promiscuous

Predominant invasive serovars

	USA, 1996-1999 (N=447)*	Australia/Canada/ Denmark/Finland, 2000-2007 (N=177)**
Serotype (invasive index ^{ŦŦ})	0.9 per 100,000/year	0.8 per 100,000/year
Typhimurium (1.6)	30%	11%
Enteritidis (1.8)	16%	20%
Heidelberg (7.0)	13%	12%
Dublin (33.3)	4%	4%
Choleraesuis (55.2)	3%	-
Schwarzengrund (10.8)	2%	-
Newport (2.6)	-	5%
Virchow (4.4)	-	4%

Mechanisms – 1 Salmonella and host adaptation

- Interaction with host through host-specific invasion: attachment, escape IR, survival in host macrophages & dendritic cells.
- Common core of virulence genes.
- Salmonella Pathogenicity Islands: genes encoding proteins responsible for host IR & virulence factors exploiting host processes.
- SPI1 SPI5 common to all serovars.
- ~23 SPIs described.

Mechanisms (2)

- Person-to-person, including nosocomial disease – adaptation of "non-human serotypes" as human pathogens
 - Salmonella Typhimurium
 ST313 (Okoro et al; 2012)
 - New evidence that Salmonella Enteritidis has also become host adapted.
 - Salmonella Isangi documented nosocomial outbreaks

Snapshot of dendrogram to illustrate PFGE banding patterns in invasive *Salmonella* Isangi isolates South Africa

Mechanisms (3)

- Environmental contamination related to human-to-human transmission as well as foodborne disease:
 - Kenyan data suggest that in Africa different pathotypes circulate among humans versus domesticated animals: some environmental contamination (Kariuki *et*; 2006).
 - Contamination of hospital environment in nosocomial transmission (Smith *et al*; 2014).

Foodborne disease – how host specific is this

- Reports of invasive Salmonella Enteritidis and Salmonella Typhimurium associated with foodborne outbreaks; molecular similarity to food animal isolates, including chicken, beef, pork.
- Salmonella Dublin beef and dairy products: raw milk; raw calves' liver
- Salmonella Newport cattle & horse meat.
- *Salmonella* Choleraesuis pork: localisation of disease in elderly.
- Rarer serotypes e.g. Salmonella Isangi outbreak reports: pork, milk formula, chicken, eggs -

Predisposing factors for invasive disease

- Extremes of age the very old and the very young; role of HIV-exposure in HIV uninfected infants.
- Immunosuppression HIV; malignancy; immunosuppressive therapy.
- Malnutrition
- Malaria
- Sickle cell disease
- Schistosomiasis

Other considerations

- Malaria interaction with cells infected by *Plasmodium.*
- Sickle cell disease and malaria role of abnormal iron metabolism and functional asplenia.
- Sickle cell disease osteomyelitis.
- Predilection for damaged tissue.
- Genetic predisposition to disease related to age, sex, race?
- Cystic fibrosis CFTR association in typhoid fever – iNTS equivalent?

Salmonella invasion

Host Immunity

- Host-specific Salmonella serovars – adapted to overcoming immunity in that host only
- Capitalise on immature / malfunctioning immune systems: failure of "hostspecific barrier" in preventing disease.
- Neonates and very young

 failure of protective
 immunity from mother.

Nosocomial transmission

- Numerous literature reports of nosocomial transmission, including Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Schwarzengrund, Salmonella Isangi.
- Increased risk of invasion with MDR serotypes.
- At-risk patients: immune-suppressed.
- Host adaptation may favour certain serotypes or pathotypes – non-invasive outbreak in neonates in RSA (2012) due to *Salmonella* Typhimurium ST19.

Age-related incidence rates – invasive disease

Age-related incidence: Global Burden of iNTS

NATIONAL INSTITUTE FOR COMMUNICABLE DISEASES Division of the National Health Laboratory Service

Ao et al, 2015 (EID in press)

Implications for control

- Need to understand where and why: food (including food animals); environment (including nosocomial); patient (immune suppression & genetics); population (vaccine campaigns etc).
- Need more evidence of host adaptation and how and where this occurs.
- Need more understanding of the immunology and the role of diseases besides HIV for management and prevention campaigns.
- Panel discussion: 3 May 2015

Thank you!

A Sooka AM Smith CED staff GERMS-SA

