Invasive Salmonellosis in Central Nigeria

Stephen Obaro MD, MRCP, FWACP, FRCPCH, PhD, FAAP
Professor of Pediatrics
Director, International Pediatric Research
University of Nebraska Medical Center
Omaha, NE
USA

9th International Conference on Typhoid and Invasive NTS Disease, 2015
Objectives

• Background
• Bacteremia surveillance of young children
• Preliminary results
• Gaps in knowledge
• Way forward
Child Mortality in Nigeria-General Facts

• About 5.3 million children are born yearly in Nigeria—11,000 everyday
 – 1 million of these children die before the age of 5 years

• Nigeria’s newborn death rate (NMR)-528 per day— is one of the highest in the world
 – About 9 of ten of newborn deaths are preventable
Lack of Etiologic Data for Bacteremic Syndromes

Limitations of previous studies

- Sub optimal laboratory Methods
- Culture media
- Agar preparation- suboptimal blood agar source
- Identification of isolates- misidentification
- Incomplete characterization
Community Acquired Bacteremic Syndrome in Young Nigerian Children (CABS SYNC)

A COLLABORATIVE STUDY
National Hospital Abuja
Zankli Medical Center
MRC Laboratories, The Gambia
Michigan State University
CDC, ATLANTA

Objectives
- To introduce automated blood culture system to pediatric clinical care
- Pilot study of the etiologic agents of bacteremia in young children in central Nigeria
Equipping the Laboratory
Surveillance

- Enrolment from Sept 2008-
- All children aged 2 months-5 years
- Fever or hypothermia (temp greater or equal to 38.5°C or less than 34.5°C plus prostration, respiratory distress, convulsion or diarrhea
- Informed consent
Methods II

• Blood drawn aseptically into culture bottle with other clinically indicated tests
• Culture bottles incubated for 5 days (max)
• Positive cultures Gram stained and sub cultured on appropriate agar plates
• Identification by standard biochemical method (API)
Pre-Consultation Antibiotic Exposure in FCT

Fig 2. Serum Antimicrobial Activity in Sub-Population by Site

(Obaro et al. 2011 BMC infectious Diseases)
Childhood Bacteremia in FCT, Central Nigeria

- 969 children aged 2 months - 5 years. Mean age was 21 ± 15.2 months.
- Salmonella spp were the leading cause of bacteremia - 28.5% with *S. typhi* accounting for 20.9% and non-typhi salmonella - 7.6%)
- *S. aureus* - 20.2%
- *S. pneumoniae* - 11.9%
- Acinetobacter - 11%.

Obaro et al. BMC Infect Dis 2011
Nigeria—Culturally Diverse
Bacteremia Surveillance in Young Children
Surveillance Sites in Kano
Facilities in Kano
Etiologic Agents of Childhood Bacteremia in North Central Nigeria

Isolate Count 3/22/2015

- **Streptococcus Pneumoniae**: 78
- **Streptococcus Specie**: 18
- **Staphylococcus Aureus**: 86
- **Salmonella Typhi**: 306
- **Salmonella Non Typhi**: 94
- **Pseudomonas Specie**: 7
- **Pseudomonas Aeruginosa**: 27
- **Providential Specie**: 5
- **Proteus Specie**: 22
- **Klebsiella Specie**: 49
- **Haemophilus Influenza**: 14
- **Escherichia Coli**: 35
- **Enterococcus Faecalis**: 12
Seasonal Trend of Invasive Salmonellosis

Number of S. Typhi and NTS isolated by month

<table>
<thead>
<tr>
<th>Month</th>
<th>S. Typhi</th>
<th>NTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb-13</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mar-13</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Apr-13</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>May-13</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Jun-13</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Jul-13</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Aug-13</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Sep-13</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Oct-13</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Nov-13</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Dec-13</td>
<td>27</td>
<td>9</td>
</tr>
<tr>
<td>Jan-14</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>Feb-14</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>Mar-14</td>
<td>51</td>
<td>42</td>
</tr>
<tr>
<td>Apr-14</td>
<td>17</td>
<td>51</td>
</tr>
</tbody>
</table>

Legend:
- Blue: S. Typhi
- Red: NTS
Age Distribution of Bacteremic Children

<table>
<thead>
<tr>
<th></th>
<th>Mean Age (Months)</th>
<th>Median</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.Typhi</td>
<td>32.5</td>
<td>31.5</td>
<td>260</td>
</tr>
<tr>
<td>NTS</td>
<td>24.3</td>
<td>22</td>
<td>73</td>
</tr>
<tr>
<td>Other bacteria spp</td>
<td>13.7</td>
<td>9</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>686</td>
</tr>
</tbody>
</table>
Isolates from Neonates

<table>
<thead>
<tr>
<th>Isolates from Infants < 1 month</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALKALIGENS SPECIE</td>
<td>1</td>
<td>1.1%</td>
</tr>
<tr>
<td>Aeromonas Hydrophila</td>
<td>1</td>
<td>1.1%</td>
</tr>
<tr>
<td>HAEMOLYTIC STREPTOCOCCUS SPECIES</td>
<td>3</td>
<td>3.2%</td>
</tr>
<tr>
<td>Candida specie</td>
<td>5</td>
<td>5.4%</td>
</tr>
<tr>
<td>ENTEROCOCCUS FAECALIS</td>
<td>4</td>
<td>4.3%</td>
</tr>
<tr>
<td>ESCHERCHIA COLI</td>
<td>9</td>
<td>9.7%</td>
</tr>
<tr>
<td>KLEBSIELLA PNEUMONIAE</td>
<td>14</td>
<td>15.1%</td>
</tr>
<tr>
<td>MORGANELLA MORGANII</td>
<td>1</td>
<td>1.1%</td>
</tr>
<tr>
<td>NON HAEMOLYTIC STREPTOCOCCUS SPECIE</td>
<td>2</td>
<td>2.2%</td>
</tr>
<tr>
<td>PROTEUS MIRABILIS</td>
<td>2</td>
<td>2.2%</td>
</tr>
<tr>
<td>PROTEUS SPECIE</td>
<td>5</td>
<td>5.4%</td>
</tr>
<tr>
<td>PROVIDENTIAL SPECIE</td>
<td>1</td>
<td>1.1%</td>
</tr>
<tr>
<td>PSEUDOMONAS AERUGINOSA</td>
<td>9</td>
<td>9.7%</td>
</tr>
<tr>
<td>SALMONELLA TYPHI</td>
<td>2</td>
<td>2.2%</td>
</tr>
<tr>
<td>SERRATIA SPECIE</td>
<td>1</td>
<td>1.1%</td>
</tr>
<tr>
<td>STAPHYLOCOCCUS AUREUS</td>
<td>28</td>
<td>30.1%</td>
</tr>
<tr>
<td>STREPTOCOCCUS PNEUMONIAE</td>
<td>5</td>
<td>5.4%</td>
</tr>
<tr>
<td>Total</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Salmonellae</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Salmonella brendeney</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Salmonella dublin</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Salmonella durban</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Salmonella enteritidis</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Salmonella Galiema</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Salmonella group B</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Salmonella Group C</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Salmonella group D</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Salmonella Paratyphi C</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Salmonella Pasing</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Salmonella poona</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Salmonella ser. Pullorum Grp D</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Salmonella spp</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Salmonella typhimurium</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Resistance Pattern of Invasive *S. typhi* Isolates
Regional Differences in S. Typhi

Abuja - percent resistant

- Azithromycin: 2.63%
- Imipenem: 0.00%
- Chloramphenicol: 61.54%
- Tetracycline: 47.44%
- Sulfamethoxazole: 92.31%
- Trimethoprim/Sulfamethoxazole: 58.97%
- Streptomycin: 24.36%
- Kanamycin: 0.00%
- Gentamicin: 0.00%
- Ciprofloxacin: 0.00%
- Nalidixic Acid: 3.85%
- Ceftriaxone: 0.00%
- Cefoxitin: 5.13%
- Ampicillin: 55.13%

Kano - percent resistant

- Azithromycin: 22.56%
- Imipenem: 0.00%
- Chloramphenicol: 35.76%
- Tetracycline: 62.42%
- Sulfamethoxazole: 92.12%
- Trimethoprim/Sulfamethoxazole: 73.94%
- Streptomycin: 55.76%
- Kanamycin: 0.61%
- Gentamicin: 1.21%
- Ciprofloxacin: 0.00%
- Nalidixic Acid: 4.24%
- Ceftriaxone: 2.42%
- Cefoxitin: 1.82%
- Ampicillin: 69.70%
Terminal Ileal Perforation (TIP)

- **Mortality**: Dickson et al. (Br. J Surg 1964) 58%
- Adesunkanmi et al. (Ann Coll Surg Hong Kong 2003) 28%
- Ugochukwu et al. (Int J Surg 2013) 19%
Typhoid Perforation-CFR

Case Fatality rates of patients with typhoid intestinal perforation:

- Nigeria (1986 - 2009) n=1427: 19.8%
- Africa (1978 - 2005) n=1818: 15.46%
- ASIA (1987 - 2008) n=1080: 11.48%
- Others (1987 - 2010) n=301: 5.98%

*unweighted

Source: Mogasale V, Desai SN, Mogasale VV, Park JK, Ochiai RL, et al. (2014) Case Fatality Rate and Length of Hospital Stay among Patients with Typhoid Intestinal Perforation in Developing Countries: A Systematic Literature Review
TIP

• A complication of treatment?
• An unusual manifestation of TF?
• Host genetic and/or bacterial virulence?

Need for improved understanding of TIP
Sickle Cell Disease

• 300x more likely to develop bacterial meningitis
• 600x more likely to develop pneumococcal meningitis
• 116x more likely to develop *H.influenzae* meningitis
• 25x more likely to develop NTS sepsis than non-SCD children from same community

2. Booth, Inusa, Obaro IJID 2011
Public Water Supply
Public Water Supply
Health Care Seeking Behavior

Alternative Medicine

Patient

CP

Chemist Pharmacy

Diagnosis

Rx → N/A → Chemist Pharmacy

?Lab diagnosis
?Availability
?Quality control
?Reliability
?Timeliness
Rising Abx Resistance

- OTC abx
- Poor quality abx

Rising Antimicrobial Resistance

- Unguided choice of abx

- Prolonged hospital stay
- Increased cost of care
- Increased mortality
Conclusions

- High prevalence of S. typhi over NTS
- Overall high prevalence of MDR (NTS>Typhi)
- High prevalence of infant disease, including neonates
- Significant regional difference in the epidemiology of invasive salmonellosis
- High prevalence of TIP
- Rare disease by Paratyphi
- Surveillance
 - population-based surveillance
 - Multi-disciplinary research teams
“The microbe that felled one child in a distant continent yesterday can reach yours today and seed a global pandemic tomorrow”

Nobel Laureate
Dr. Joshua Lederberg
Acknowledgement

• Funding- BMGF
 – NIAID (NIH)
 – UNMC
• Local Logistics- Zankli Medical Center, Abuja
 – NHA
 – AKTH
 – HSMB
• Laboratories- MRC, Gambia
• CDC, Atlanta
• Wellcome Trust Sanger Institute
Thank you!