

Tackling iNTS disease

Allan Saul Sclavo Behring Vaccines Institute for Global Health Bali, 2nd May 2015

Tackling iNTS diseases

Prevention AND treatment

gsk

- Treatment
 - Diagnosis remains a challenge
 - Awareness of population at risk and risk factors
 - Changing patterns of drug resistance
- Environmental intervention
 - Mode of transmission?
 - What is the reservoir?
 - Human to human or animal (bird) to human?
 - Environmental persistence?
- Vaccines
 - Burden of disease estimates
 - Identification of target populations
 - Identification of trial sites and endpoints

All three depend on epidemiological research

Why a vaccine for iNTS?

- Difficult to diagnose
- Rapid onset
- Widespread drug resistance
- Other vaccines (Hib, pneumococcal) work well in the African context

iNTS vaccines

Candidate_Name/Identifier	Pre- clinical	Phase 1	Phase 2	POC	Phase 3
Attenuated oral vaccine: CVD 1931(S. Typhimurium Δ <i>guaBA,</i> Δ <i>clipX</i>) and CVD 1944 (S. Enteritidis ΔguaBA, ΔclipX) [UMB]	Х				
Attenuated oral vaccine: WTO5S. (S. Typhimurium Δ <i>aroC,</i> Δ <i>ssαV</i>) [Microscience Limited]		Х			
O:4,5-TT [NIH]	Х				
O antigen-flagellin conjugates. O:4,5 : FliCi and O:9 : FliCg,m. [UMB; Bharat Biotech; Wellcome Trust]	Х				
Bivalent conjugate (O:4,5-CRM ₁₉₇ and O:9-CRM ₁₉₇) [SBVGH]	Х				
O:4,5-GMMA and O:9-GMMA [SBVGH]	Х				
OmpD [University of Birmingham, SBVGH]	Х				

See discussion paper for WHO vaccine priority meeting

http://who.int/entity/immunization/research/meetings_workshops/NonTyphoidalSalmonella_VaccineRD_Sept2014.pdf?ua=1

- Best case scenario for development
 - Assumes no delays (almost never happens)
 - Minimizes future predictions for burden of disease
- Worst case scenario for resources
 - Potential bottleneck in obtaining epidemiological input
 - Requires major early investment in trials and manufacturing

2015: Preclinical	2016-2017: Phase 1	2019: Phase 2 & cPoC
Vaccines in development	Production of pilot scale GMP vaccine	Age de-escalation completed in infants
Case for an iNTS vaccine Initial TPP	Trials in healthy adult volunteers	Phase 3 manufacturer engaged
Epidemiology to support early development Target groups identified Epidemiology to support TPP	Epidemiology to support case for Phase 3 trials and manufacture cPoC criteria identified Phase 3 efficacy sites identified	Epidemiology to support case for deployment Phase 3 trial sites ready Engagement of WHO/UNICEF/GAVI and other public and national health authorities

2023: Phase 3 Efficacy	2025: Registration	2026+ deployment
Manufacture scaled up Consistency lots Trials in HIV infected adults Phase 3 studies complete Efficacy estimates	National registration	Phase 4 studies WHO prequalification allowing UNICEF/GAVI involvement
Update of burden of disease figures	Preparation for deployment	Vaccine effectiveness studies

- Target populations (infants, HIV all ages, high incidence areas?)
- Minimum usable efficacy
 - This strongly impacts Phase 3 trial design
- Minimum usable longevity of protection
- A lot of technical stuff re dose, production, formulation etc.,
- First 3 require substantial epidemiological input

The impact of the vaccine over period 2025 -2035?

- Need to know how many are infected now
- Predict changes that will happen in next 20 years and impact on iNTS incidence
- Need to predict impact of vaccine on burden of disease
 - Likely vaccine uptake
 - Likely efficacy
 - Other factors
- Burden of disease and impact need credible range estimates

2015: Preclinical	2016-2017: Phase 1	2019: Phase 2 & cPoC
Vaccines in development	Production of pilot scale GMP vaccine	Age de-escalation completed in infants
Case for importance of iNTS vaccine	Trials in healthy adult volunteers	Phase 3 manufacturer engaged
Initial TPP		
Epidemiology to support early development	Epidemiology to support case for Phase 3 trials and	Epidemiology to support case for deployment
Target groups	manufacture	Phase 3 trial sites ready
identified	cPoC criteria identified	Engagement of
Epidemiology to support TPP	Phase 3 efficacy sites identified	WHO/UNICEF/GAVI and other public and national health authorities

- cPoC is NOT an estimation of efficacy for registration
- Existing animal models and *in vitro* killing activity (SBA, OP assay) but no surrogate for protection in humans
- For Infants
 - S. Typhimurium infection inverse correlation with antibody
 - Loss of passive maternal antibody and low actively induced antibody
 - cPoC may be based on antibody levels
 - S. Enteritidis infection no published data
- For HIV infections not clear.
- Sero-epidemiology would be useful at least in infants

By 2020 sites ready

- Infants only, HIV adults only, both?
- S. Typhimurium, S. Enteritidis, or both (and others)?
- Needs stable infection rates
- Needs infrastructure to identify and diagnose cases.
 - *c.f.* RTS,S trials for a disease with much higher incidence.
- Probably needs multiple sites

Assumptions

- Testing a bivalent vaccine in Infants
- Age distribution similar to that seen in Malawi (MacLennan et al, J Clin Invest. 2008)
- Vaccination at EPI schedule and followed until 18 months old
- Vaccine is 80% efficacious
- Power of the trial is equal to 80%
- − Lower Limit of 95% CI for efficacy rate is \geq 10%
- Vaccine and placebo group ratio is 1:1
- Expect 15 cases in each group in absence of vaccination

10-20,000 subjects needed assuming similar incidence to that seen in the RTS,S trials

- Vaccines for iNTS are feasible
- Development will require a strong epidemiological basis
 - Burden of disease estimates
 - Identification of target populations
 - Identification of trial sites and endpoints
- Timeline is critical Delays add to development costs and uncertainties