Understanding transmission of invasive non-typhoidal *Salmonella*

Dr Karen H. Keddy

Centre for Enteric Diseases

National Institute for Communicable Diseases

Salmonella taxonomy

Species	S. enterica						S. bongori (V)
Subspecies	enterica (I)	salamae (II)	arizonae (IIIa)	diarizonae (IIIb)	houtenae (IV)	indica (VI)	
Usual habitat	Warm blooded animals		Cold-blooded animals and environment				

- >2600 serovars
- New serovars emerging
- Well-described host-specificity, but some serovars may be promiscuous

Predominant invasive serovars

	USA, 1996-1999 (N=447)*	Australia/Canada/ Denmark/Finland, 2000-2007 (N=177)**	South Africa, 2003-2013 (N=8462) [∓]	South Africa, Animal data 2013-02/2015 (N=8663) [‡]
Serotype (invasive index ^{‡‡})	0.9 per 100,000/year	0.8 per 100,000/year	1.6 per 100,000/year (1.2 – 2.0)	
Typhimurium (1.6)	30%	11%	46%	4%
Enteritidis (1.8)	16%	20%	24%	19%
Heidelberg (7.0)	13%	12%	1%	1%
Dublin (33.3)	4%	4%	4%	-
Choleraesuis (55.2)	3%	-	<1%	-
Schwarzengrund (10.8)	2%	-	<1%	3.1%
Newport (2.6)	-	5%	<1%	<1%
Virchow (4.4)	-	4%	1%	<1%

Mechanisms – 1

Salmonella and host adaptation

- Interaction with host through host-specific invasion: attachment, escape IR, survival in host macrophages & dendritic cells.
- Common core of virulence genes.
- Salmonella Pathogenicity Islands: genes encoding proteins responsible for host IR & virulence factors exploiting host processes.
- SPI1 -SPI5 common to all serovars.
- ~23 SPIs described.

Mechanisms (2)

 Person-to-person, including nosocomial disease – adaptation of "non-human serotypes" as human pathogens

- Salmonella Typhimurium ST313 (Okoro et al; 2012)
- New evidence that Salmonella Enteritidis has also become host adapted.
- Salmonella Isangi documented nosocomial outbreaks

Snapshot of dendrogram to illustrate PFGE banding patterns in invasive *Salmonella* Isangi isolates South Africa

Mechanisms (3)

- Environmental contamination related to human-to-human transmission as well as foodborne disease:
 - Kenyan data suggest that in Africa different pathotypes circulate among humans versus domesticated animals: some environmental contamination (Kariuki et; 2006).
 - Contamination of hospital environment in nosocomial transmission (Smith et al; 2014).

Foodborne disease – how host specific is this

- Reports of invasive Salmonella Enteritidis and Salmonella Typhimurium associated with foodborne outbreaks; molecular similarity to food animal isolates, including chicken, beef, pork.
- Salmonella Dublin beef and dairy products: raw milk; raw calves' liver
- Salmonella Newport cattle & horse meat.
- Salmonella Choleraesuis pork: localisation of disease in elderly.
- Rarer serotypes e.g. Salmonella Isangi outbreak reports: pork, milk formula, chicken, eggs -

Protein shakes widely used in RSA for AIDS patients pre-HAART?

Predisposing factors for invasive disease

- Extremes of age the very old and the very young; role of HIV-exposure in HIV uninfected infants.
- Immunosuppression HIV; malignancy; immunosuppressive therapy.
- Malnutrition
- Malaria
- Sickle cell disease
- Schistosomiasis

Other considerations

- Malaria interaction with cells infected by Plasmodium.
- Sickle cell disease and malaria role of abnormal iron metabolism and functional asplenia.
- Sickle cell disease osteomyelitis.
- Predilection for damaged tissue.
- Genetic predisposition to disease related to age, sex, race?
- Cystic fibrosis CFTR association in typhoid fever – iNTS equivalent?

Salmonella invasion

Host Immunity

- Host-specific Salmonella serovars – adapted to overcoming immunity in that host only
- Capitalise on immature / malfunctioning immune systems: failure of "hostspecific barrier" in preventing disease.
- Neonates and very young

 failure of protective
 immunity from mother.

Nosocomial transmission

- Numerous literature reports of nosocomial transmission, including Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Schwarzengrund, Salmonella Isangi.
- Increased risk of invasion with MDR serotypes.
- At-risk patients: immune-suppressed.
- Host adaptation may favour certain serotypes or pathotypes – non-invasive outbreak in neonates in RSA (2012) due to *Salmonella* Typhimurium ST19.

Age-related incidence rates – invasive disease

**Laupland et al; 2010

Age-related incidence: Global Burden of iNTS

Invasive *Salmonella* cases, South Africa; 2003 - 2014

South African experience 2003 - 2013

iNTS in HIV-uninfected population 2003-2013 in South Africa

- 594/3242 (18.3%) cases
- Commonest serotypes Salmonella Enteritidis (210; 35.4%) Salmonella Typhimurium (188; 31.6%) Salmonella Isangi (32; 5.4%) Salmonella Dublin (24; 4.0%).
- Associated with HIV-exposure; prematurity and PEM in children.
- Older children & adults: malignancy; DM; corticosteroid therapy; renal disease.
- Focal infections: septic arthritis; abscess.

Implications for control

- Need to understand where and why: food (including food animals); environment (including nosocomial); patient (immune suppression & genetics); population (vaccine campaigns etc).
- Need more evidence of host adaptation and how and where this occurs.
- Need more understanding of the immunology and the role of diseases besides HIV for management and prevention campaigns.
- Panel discussion: 3 May 2015

Thank you!

A Sooka AM Smith CED staff GERMS-SA

