

Mathematical modeling reveals the potential consequences of the worldwide emergence of the H58 haplotype of *Salmonella* Typhi

Virginia Pitzer, ScD Assistant Professor Epidemiology of Microbial Diseases Yale School of Public Health <u>virginia.pitzer@yale.edu</u>

What is mathematical modeling?

- Yale
- Description of a system using mathematical concepts and equations
- Differs from traditional statistical modeling methods which assume independent observations
- Takes into account NON-LINEAR effects that result from the interaction of infectious and susceptible individuals

Why model?

Study control measures

 What level of indirect protection can be expected from different vaccination strategies?

Predict future trends

Will vaccination eliminate typhoid, or can we expect incidence to rebound?

- Explain observed patterns in data
 - Why is typhoid incidence increasing in different parts of the world?
 - <u>HYPOTHESIS</u>: Patterns can be explained by the emergence of H58 haplotype at different times in setting with different baseline incidence

Emergence of the H58 haplotype

Yale SCHOOL OF PUBLIC HEALTH

Wong et al, Nature Genetics (2015)

A Tale of Two Cities...

5

Ya

Emergence of the H58 haplotype

Kathmandu, Nepal

Blantyre, Malawi

Dynamic model structure

Essential features:

- Loss of immunity to subclinical infection
- Primary vs secondary infection
- Chronic carriers
- Balance between "short cycle" transmission via contamination of food, etc in the immediate environment
- …and "long cycle" transmission via contaminated water
 - May be more seasonal

Why is typhoid incidence increasing in Malawi? Yale

- Increased prevalence of drug-resistant strains
 - Longer duration of infectiousness

Why is typhoid incidence increasing in Malawi? Yale

- Increased prevalence of drug-resistant strains
 - Longer duration of infectiousness
- Emergence of the H58 haplotype, which is more "fit"/transmissible than previous strains
 - Increase in the transmission rates

Why is typhoid incidence increasing in Malawi? Yale

- Increased prevalence of drug-resistant strains
 - Longer duration of infectiousness
- Emergence of the H58 haplotype, which is more "fit"/transmissible than previous strains
 - Increase in the transmission rates
- Both would lead to an increase in R₀ Yale school of PUBLICHEALTH

Epidemic drivers: Kathmandu, Nepal

- Model provides a good fit to the data and can explain the increase in cases in 2002
- But increase in infectious period is unrealistically long

¹¹ Yale school of public health

Bowles CC et al (in prep)

Yale

Epidemic drivers: Blantyre, Malawi

Yale

 Assume the duration of infectiousness increases coincident with the emergence of MDR strains

Epidemic drivers: Blantyre, Malawi

Yale

 Assume the transmission rate increases coincident with the emergence of H58 haplotype

What might happen in the future?

Caveats

Simplified model

- Homogeneous mixing
- No differences in risk by age
- Not explicitly modeling multiple strains
- ...
- Need to determine whether adding "realism" to model will result in qualitatively different predictions

"All models are wrong, but some are useful"

--George E.P. Box

Alternative explanations

<u>Kathmandu</u> – Influx of susceptible migrant male workers from low-incidence rural regions

Epidemic drivers: Migration & resistance

- Both antibiotic resistance and migration likely played a role in altered typhoid dynamics from 2002-2003
 - Need strategies to better control antibiotic distribution
 - Migrants may be an essential part of a successful vaccination campaign
- ¹⁷ Yale school of public health

<u>Blantyre</u> –

Increasing population density

Cross-immunity from *S. enteritidis*

Environmental or other interaction among *Salmonella* species?

Sources of uncertainty

- What is the true burden of typhoid?
 - Need for better diagnostics
- What is the prevalence of chronic carriers and their role in transmission?
 - How does this vary among settings?
- Is natural immunity maintained through repeated exposure to subclinical infections in endemic settings?

Acknowledgements

Princeton University

- Bryan Grenfell
- Cayley Bowles (UCLA)
 OUCRU
- Stephen Baker
- Corinne Thompson
- Jeremy Farrar (WT)
- Buddha Basnyat
- Univ of Liverpool/MLW
- Nick Feasey
- Rob Heyderman
- Melita Gordon

Malawi-Liverpool-Wellcome Trust Clinical Research Programme

Gates Foundation

 RAPIDD Program of Fogarty International Center/NIH and DHS

