Future typhoid conjugate vaccines

Rodney Carbis
ASTMH - New Orleans
6 November 2014
Moral obligation

Every person has the right to receive high quality, safe and efficacious vaccines to protect them from infectious diseases.

Typhoid vaccine is no exception

A significant disease burden exists in impoverished communities
Limited funding

Funding for vaccination is limited so in order to get the broadest coverage in developing countries, vaccines must be affordable.
How does IVI address affordability and supply

Process development:

- High yielding antigen production
- High recovery purification process
- Scalable process compatible with cGMP production

Technology Transfer:

- High standards for quality, strict adherence to cGMP
- Manufacturers committed to low cost production and low margin sales
 - Developing Country Vaccine Manufacturers
- Manufacturer with capacity to WHO prequalify
Production of Vi

1. Increased cell density by Fed batch fermentation

2. Increased Vi production by controlling glucose concentration
 - High glucose inhibited Vi production
 - High pH and high salt concentrations also inhibitory
Purification

Downstream processing (purification of Vi)

Removal of impurities
Maximize recovery of Vi polysaccharide

- Clarification
- Fermentation
- Inactivation
- Concentration
- Diafiltration
- Seed bank
- Local Indian Isolate
- Cetavlon precipitation
- Dissolve in 60% ethanol
- Precipitate and wash with 75% ethanol
- Dissolve in water
- \((\text{NH}_4)_2\text{SO}_4\)
- Precipitate impurities
- Concentration / Diafiltration
- Sterile filtration

40% recovery - approximately 1,000,000 doses per 100 L fermentation
Conjugate Vaccine

Vi polysaccharide only vaccines
- Poor anti-Vi antibody responses in older children and adults
- No response in infants (< 2 years of age)
- No memory - no boosting
- Relatively short lived immunity

Vi conjugate vaccine
(polysaccharide bound to protein carrier)
Change the nature of the response to recruit T helper cells
- Higher antibody responses in all age groups including a response in infants
- Induction of memory and boosting on revaccination
- Duration of immunity much longer
Conjugation Chemistry

1. Derivatization of Diphtheria Toxoid (DT)

\[
\text{DT}^{\text{COOH}} + \text{EDAC} \rightarrow \text{DT}^{\text{CONHNHCO(CH}_2\text{)}_4\text{CONHNH}_2}
\]

\[
\text{NH}_2\text{NHCO(CH}_2\text{)}_4\text{CONHNH}_2
\]

80% recovery of Vi – 800,000 doses per 100 L fermentation

2. Conjugation

\[
\text{DT}^{\text{CONHNHCO(CH}_2\text{)}_4\text{CONHNH}_2} + \text{HOOC Vi} \rightarrow \text{DT}^{\text{CONHNHCO(CH}_2\text{)}_4\text{CONHNHOC Vi}}
\]
Technology Transfer

Initial training at IVI
Follow up at manufacturer

Technology transferred to:

Shantha Biotechnics - India
SK chemicals - Korea
BioFarma - Indonesia
Incepta - Bangladesh

Ensuring a reliable supply of vaccine
Target population

• The vaccine should be able to be administered during routine and mass immunization to various age groups including adults, children, and infants aged 9 months and above

• Delivery during the routine measles EPI will reduce the programmatic costs involved in vaccinating.

• Clinical trials with our three manufacturing partners will begin next year
 – Age descending to demonstrate safety and immunogenicity
 – In the target population will need to demonstrate vaccine can be safely co-administered with concomitantly scheduled, licensed vaccines
 – Does not result in antigen interference
Future vaccines being developed at IVI

There is limited funding for introduction of new vaccines particularly in developing countries so adding value to the typhoid conjugate vaccine may help to prioritize its introduction.

Enteric fever caused by *Salmonella* Paratyphi A (clinically indistinguishable from typhoid fever) ranges from 11 – 35% in some areas and is increasing where typhoid vaccination is active.

Using PspA (common pneumococcal surface antigen) as a carrier protein we may be able to have a typhoid vaccine that has the potential to also provide broad protection against *S. pneumoniae*.

Formulate Vi-DT conjugate with existing pediatric vaccines and deliver in EPI programs in typhoid endemic communities.

Benefits - no storage costs or additional burden on the cold chain
- no delivery cost as administered with existing vaccine
Bivalent Typhoid/Paratyphoid A conjugate vaccine

Salmonella Typhi
Vi-DT conjugate developed and technology transferred

Salmonella Paratyphi A
OSP purification process development completed

Tetanus Toxoid
OSP-TT conjugate proof of principle established

Bivalent proof of principle established
Vi as an antigen presentation vehicle

During development of Vi-DT we observed that a single dose:
Increased the anti-DT response for up to 12 weeks
DT alone - poorly immunogenic after 1 dose - required 3 doses
to mount an anti-DT response equal to 1 dose of conjugate

IS CARRIER PROTEIN RELEASED SLOWLY FROM THE CONJUGATE?

DOES CONJUGATION TO Vi PRESENT THE CARRIER PROTEIN MORE EFFICIENTLY TO IMMUNE CELLS?

NOTE: Physical structure is critical for this to work

Salmonella Typhi
Vi-DT conjugate
Conjugation of PspA (families 1 and 2) to Vi enhanced the response to both Vi and PspA. PspA is a suitable carrier protein. Demonstrated PspA family specific protection in mouse intravenous challenge model. Looking for a partner to co-develop this vaccine.
Vaccines only save lives after vaccination of susceptible individuals. Vaccine development takes on real value only after introduction of the vaccine.

IVI through its DOMI program provided valuable disease incidence and burden data which assisted WHO in formulation of its recommendations for typhoid vaccination.

IVI is working on an investment case to assist GAVI in making decisions to fund typhoid vaccination.

TYPHOID VACCINATION WILL SIGNIFICANTLY CONTRIBUTE TO IMPROVING THE HEALTH OF PEOPLE LIVING IN IMPOVERISHED CONDITIONS IN TYPHOID ENDEMIC AREA

We need to continue working together to ensure that routine typhoid vaccination becomes a reality.
Thank you