

Cost-effectiveness of conjugate typhoid vaccination: a preliminary analysis

Vittal Mogasale 8th International Conference on Typhoid Dhaka; March 2013

Contents

- Background
- Assumptions
 - Vaccine and vaccination strategies
 - Vaccine and vaccination costs
- Estimations
 - Disease burden and disease costs
 - Vaccination impacts
- Cost-effectiveness results
- Next steps
- Conclusions

Background : cost-effectiveness analysis

- Part of IVI's typhoid global investment case study
- Builds on disease burden and economic burden work
- Uses standard set of assumptions across developing countries
- Estimated by UN sub-regions

UN regions included in the analysis

ASSUMPTIONS

assumptions

Vaccine introduction assumptions

- Vaccine is introduced in high (>100/100,000) and medium incidence (10~100/100,000) countries
- Targeted to high-risk population (Urban slums and rural area without improved water)
- The reference population is that of 2010
- Vaccination is in campaign mode and completed in 2010

Vaccine characteristics

- Assumed Vi conjugate vaccine characteristics
- 1-3 doses with and without catch-ups
- Duration of protection: 14 years
- Efficacy: 90% on 1st year
- Efficacy waning: exponential decay

• Separate analysis will be conducted for ViPS and Ty21a based on known characteristics

Vaccination strategies: Vi conjugate vaccine

Vaccination coverage assumptions

- Dose at 9 month: MCV1 100% coverage
- Dose at 6 years: MCV2 75% coverage
- DTP 1 to DTP 2 dropout rate was used to estimate MCV2 incase data unavailable
- Based on WHO report

Costs assumptions

- Total Vi-conjugate per dose = \$2.33 per dose
 - Vi-conjugate = \$1.50 per dose + 15% FIC = \$1.73 per dose
 - Delivery = \$0.60 per dose (from WHO cMYP costing manual for campaigns)
- Estimate would be improved later
- Wastage = 10%
- Discounting =3%

IVI estimations

IVI ESTIMATIONS

High and medium incidence countries

Surveillance site

* Not adjusted for blood culture sensitivity

Disease burden (2010)

Region	Median no. of cases	Median no. of Deaths
Africa	3,977,170	37,892
Asia	8,353,453	38,983
Latin America	143,005	667
Total	12,473,628	77,542

Economic burden (2010)

RESULTS

Population targeted for vaccination

High incidence countries (2.7 billions)
Medium incidence countries (0.67 billions)

Vaccination impact*

	Averted cases	Averted deaths	Averted DALYs
High incidence countries	2,461,317	8,122	256,899
Medium incidence countries	21,723	72	2,446
Total	2,483,040	8,194	259,345

*Estimated till 2030, no herd protection considered

Costs (in millions, \$2010)

Cost-effectiveness (cost per DALY)

Next steps

- Uncertainty interval estimation
- Cost-effectiveness of other vaccination strategies
- Incorporating herd effect into costeffectiveness based on IVI dynamic disease transmission model
- Cost-effectiveness of ViPS and Ty21a vaccines
- Vaccination strategy expansion pathway analysis

Conclusions: ViCV

- Targeting high incidence countries with two doses and medium incidence countries with one dose of ViCV would be cost-saving to costeffective.
- These are preliminary results, findings may change with change in assumptions

Acknowledgements

- Jung Seok Lee
- Brian Maskery
- R. Leon Ochiai
- Young Eun Kim
- Jin Kyung Park
- Thomas Wierzba
- John Clemens

- CaT experts
- BMGF

