Updates on Typhoid Conjugate vaccine Development: IVI

Sushant Sahastrabuddhe

8th International Conference on Typhoid Fever and Other Invasive Salmonelloses
2nd March 2013
Outline of the presentation

• Need for a typhoid conjugate vaccine
• IVI’s work in Typhoid Fever (DOMI, VIVA, TSAP)
• Brief history of IVI’s typhoid conjugate vaccine development program
• Updates on the Vi-DT vaccine development status
• Timelines
• Future Development plans
Issues with currently available typhoid vaccines

Issues with current oral typhoid vaccine (Ty21a)
- Multiple doses needed
- Strict cold chain requirement
- Not available for children < 5 years of age

Issues with polysaccharide:
- T-cell independent: Poorly immunogenic in young children, No booster response
- Requires repeat dosing every 3 years
- Modestly immunogenic (55% at the end of 3 years)
Newer Typhoid Vaccines in Development

Vaccines developed through genetic mutations
- CVD 908: mutation in *aroC/aroD*
- CVD 908-htrA: further mutation in *htrA*
- CVD 909: Replaced P_{tviA} with P_{tac} of CVD 908-htrA
- Ty800: mutation in *phoP/phoQ*
- X3927: mutation in *cya* and *crp*
- MO1ZH09: mutation in *aroC* and *ssaV*

Vaccines developed using Conjugation:
A process wherein a poorly immunogenic molecule (polysaccharide) is covalently bound to a carrier protein thereby increasing the immunogenicity of the final product and making it T-cell dependent.
Currently available polysaccharide-protein conjugate vaccines

- Pneumococcal vaccine:
 - Prevnar®
 - Synflorix®
 - Prevnar 13®

- Haemophilus influenzae type B vaccine:
 - ActHIB®
 - Hiberix®
 - PedvaxHIB®
 - All pentavalent vaccines have Hib conjugate

- Meningococcal vaccine:
 - Menveo®
 - Menactra®

- Typhoid vaccine:
 - Pedatyph®
IVI’s work in Typhoid fever

• DOM I:

Prospective population based disease burden studies conducted in 5 different countries in Asia

• VIVA Initiative:

1. To ensure the licensure and WHO pre-qualification of a Vi conjugate vaccine
2. To ensure a cost-competitive supply of Vi polysaccharide vaccine
3. To accelerate the adoption of Vi polysaccharide vaccine in high-risk areas
4. To prepare an investment case and developing an advocacy strategy

• TSAP:

Typhoid disease burden in Africa through establishment of surveillance sites
<table>
<thead>
<tr>
<th></th>
<th>Gaps</th>
<th>VIVA’s attempt to bridge the gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine</td>
<td>Typhoid vaccines not WHO prequalified</td>
<td>Facilitate prequalification of existing and future vaccines</td>
</tr>
<tr>
<td></td>
<td>Licensed only for age 2 years and above</td>
<td>Development of Vi-DT conjugate vaccine</td>
</tr>
<tr>
<td>Introduction strategy</td>
<td>Current typhoid vaccines not suitable for EPI schedule</td>
<td>Pilot school-based typhoid vaccine introduction projects in high endemic countries</td>
</tr>
<tr>
<td></td>
<td>New implementation platform required in many countries</td>
<td></td>
</tr>
<tr>
<td>Financing</td>
<td>Typhoid vaccine is not GAVI supported</td>
<td>Cross-subsidization: novel financing mechanism</td>
</tr>
<tr>
<td>Policy and Advocacy</td>
<td>Only endemic provinces in China, Vietnam, and Delhi State (India) have introduced the vaccine as a routine program</td>
<td>Medical Officer at WHO HQ to facilitate communication with Regional Offices and countries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vaccine investment case development</td>
</tr>
</tbody>
</table>
Typhoid conjugate vaccine: Vi-DT

• With the initial know-how from US NIH, IVI developed the technology to adopt for developing country manufacturers:
 – The step of phenol extraction was removed
 – Carrier protein was changed to DT as DT is easy/cheap to produce, has regulatory precedence, and is manufactured by many developing country manufacturers
 – The yield of Vi polysaccharide had been increased 7-fold through process optimization.
 – The conjugation process has been optimized to attain at least 40% recovery for the final product.
Typhoid conjugate vaccine: Vi-DT

- Shantha Biotechnics in India was identified as manufacturing partner after a due diligence process.
- The technology to manufacture Vi-DT was transferred to Shantha.
- Shantha has completed the toxicology study and have produced clinical trial lots.
- The regulatory dossier has been submitted to DCGI in December and the approval is expected in May/June.
• Working in close collaboration with University of Vermont, IVI is developing the Opsanophagocytic assay for S. Typhi

• This will not be required either for local licensure in India or for WHO PQ; but will help in better quantifying the results of the data coming out form the clinical studies

• In the initial work conducted at IVI, we have seen some serum bactericidal activity and this work will be validated soon
Target Product Profile

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Group</td>
<td>All age groups; targeting 9 months and above for first licensure</td>
</tr>
<tr>
<td>Route</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>Dose</td>
<td>25 or 12.5 or 5 mcg; to be explored and finalized in Phase II studies</td>
</tr>
<tr>
<td>Presentation</td>
<td>Vials (PFS to be explored based on business needs)</td>
</tr>
<tr>
<td>No of doses (Schedule)</td>
<td>Age group 9 months to 2 years: 2 doses (9 months + booster at 15-18 months)</td>
</tr>
<tr>
<td></td>
<td>Age group > 2 years: 1 dose</td>
</tr>
<tr>
<td></td>
<td>Age 6 weeks to 9 months: 2 or 3 doses (to be explored)</td>
</tr>
<tr>
<td>Co-administration</td>
<td>Co-administration possible with concomitantly administered vaccines for age group</td>
</tr>
<tr>
<td>Target Countries</td>
<td>India; WHO PQ; Public funded markets in Asia, Africa and Latin America</td>
</tr>
<tr>
<td>Shelf life</td>
<td>36 months at 2-8 degrees Celsius</td>
</tr>
<tr>
<td>Phase</td>
<td>Country</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>I</td>
<td>India</td>
</tr>
<tr>
<td>II</td>
<td>India</td>
</tr>
<tr>
<td>III</td>
<td>India</td>
</tr>
<tr>
<td>IV</td>
<td>India</td>
</tr>
<tr>
<td>Project</td>
<td>Start</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>ECV01 (Phase I)</td>
<td>Jun 2013</td>
</tr>
<tr>
<td>ECV02 (Phase II)</td>
<td>Aug 2014</td>
</tr>
<tr>
<td>ECV03 (Phase III)</td>
<td>Apr 2016</td>
</tr>
<tr>
<td>ECV04 (Phase III)</td>
<td></td>
</tr>
<tr>
<td>India Licensure</td>
<td></td>
</tr>
<tr>
<td>WHO PQ</td>
<td></td>
</tr>
</tbody>
</table>
Additional partnerships for Vi-DT

- IVI- BioFarma partnership:
 - MoU has been signed and the technology to manufacture Vi-DT will be transferred in 2013

- IVI-SK chemicals partnership:
 - MoU has been signed and the technology to manufacture Vi-DT will be transferred in 2013
Typhi-Paratyphi A bivalent vaccine

• IVI’s work in Paratyphoid

• Prospective population based disease burden data from DOMI Typhoid Program
 – Paratyphoid fever is becoming a significant problem in Asia
 – More paratyphoid than typhoid fever detected in Guangxi province in recent years

Ochiai et al. Emerg Infect Dis. 2005

Many reports in Asia since have confirmed the high burden of SPA

![Graph showing incidence of Salmonella enterica serovar Typhi and S. Paratyphi A in 4 Asian countries.]

Figure. Incidence of *Salmonella enterica* serovar Typhi and S. Paratyphi A in 4 Asian countries.
IVI’s work in Paratyphoid

PARACHINA Program:
- To generate the multi-disciplinary evidence needed to inform policymakers whether introduction of vaccines against paratyphoid is warranted and can be accomplished in a feasible and sustainable fashion in Guangxi province, China
- Explored the burden of paratyphoid fever through a population based study in Hechi, Guangxi Province
- Incidence of blood culture confirmed paratyphoid fever was 10/100,000 per year in the 3-year study period

Paratyphoid A carrier survey:
- We followed up 353 historical SPA cases by collecting stool and blood samples
- The prevalence of SPA carriage status among historical SPA cases was 2%.
IVI is developing a bivalent S. Typhi- S. Paratyphi A conjugate vaccine

- Monovalent Vi-DT process development is completed
- Monovalent OSP-DT process development is underway
- Optimization work is being done to prepare the final formulation of the bivalent vaccine
Thank you!