Lethal invasive non-typhoidal Salmonella infections in young children in sub-Saharan Africa Myron M. (Mike) Levine, M.D., D.T.P.H. **Grollman Distinguished Professor & Director**, **Center for Vaccine Development (CVD)**, **University of Maryland School of Medicine Baltimore**, **MD** 

8<sup>th</sup> International Conference on Typhoid & other Invasive Salmonelloses Dhaka, Bangladesh, March 1, 2013



### Invasive bacterial infections among children < 5 years of age in sub-Saharan Africa

#### Blood-borne pathogens on the radar screen

- Haemophilus influenzae type b (Hib)
- Streptococcus pneumoniae ("pneumo")
- Neisseria meningitidis (interest in Group A)



### A blood-borne pathogen not on the radar

Non-typhoidal Salmonella ("NTS")

CVD





## Annual incidence of invasive pneumo & NTS disease in 3 African sites

| Site                                                                 | Age group  | Inc. inv.               | Inc. inv.               |
|----------------------------------------------------------------------|------------|-------------------------|-------------------------|
| (Period)                                                             |            | pneumo                  | NTS                     |
|                                                                      |            | <b>/10</b> <sup>5</sup> | <b>/10</b> <sup>5</sup> |
| Kilifi, Kenya (1998-02)<br>J Berkley et al, 2005 (7% HIV prevalence) | 0-11 mos.  | 241                     | 170                     |
| Basse, Gambia                                                        | 2-5 mos.   | 363                     | 408                     |
| <b>(2000-4)</b> G Enwere et al, 2006                                 | 6-11 mos.  | 576                     | 360                     |
| (~1% HIV prevalence)                                                 | 12-17 mos. | 526                     | 334                     |
| Manhica, Mozambique                                                  | 0-11 mos.  | 403                     | 388                     |
| <b>(2001-6)</b> B Sigauque et al, 2009<br>(15% HIV prevalence)       | 12-59 mos. | 187                     | 262                     |

### Incidence of NTS sepsis disease during the controlled field trial of RTS,S malaria vaccine in 7 African countries

|                            | Salmonella sepsis (cases/10 <sup>3</sup> ) |                                           |  |  |  |
|----------------------------|--------------------------------------------|-------------------------------------------|--|--|--|
| Age group on<br>enrollment | RTS,S malaria<br>vaccine (N=5949) (N=2074) |                                           |  |  |  |
| 5-17 mos.                  | $6.9/10^3/18 \text{ mos fu}$               | (N=2974)<br>7.7/10 <sup>3</sup> /9 mos fu |  |  |  |
|                            | RTS,S malaria<br>vaccine (N=4358)          | Menin. Vaccine<br>(N=2179)                |  |  |  |
| 6-12 wks.                  | 3.7/10 <sup>3</sup> /9 mos fu              | 4.6/10 <sup>3</sup> /9 mos fu             |  |  |  |

RTS,S Clinical Trials Partnership. NEJM 2011; 365:1863-1875

| Annualized incidence of NTS sepsis disease<br>during the controlled field trial of RTS,S<br>malaria vaccine in 7 African countries |                                   |                             |  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------|--|
| Salmonella sepsis (cases/10 <sup>5</sup> /12 mos of follow-up)                                                                     |                                   |                             |  |
| Age group                                                                                                                          | RTS,S malaria<br>vaccine (N=5949) | Rabies vaccine<br>(N=2974)  |  |
| 5-17 mos.                                                                                                                          | 460                               | 770                         |  |
|                                                                                                                                    | RTS,S malaria<br>vaccine (N=4358) | Mening. Vaccine<br>(N=2179) |  |
| 6-12 wks.                                                                                                                          | 493                               | 613                         |  |

RTS,S Clinical Trials Partnership. NEJM 2011; 365:1863-1875

### **Invasive NTS disease**

#### **Industrialized countries**

- Invasive disease as a complication of gastroenteritis
- Severe invasive disease:
  - Infants < age 3 months</li>
  - The elderly
  - Immunocompromised
- Incidence is increasing
- Typhimurium (ST19), Enteritidis, Heidelberg, Dublin, Schwarzengrund
- Animal reservoir
- Promiscuous host range





Clinical features among young children in sub-Saharan Africa with invasive NTS disease

- Most cases do not present with gastroenteritis, nor do they have a history of recent gastroenteritis!!
- Children with invasive NTS disease are clinically indistinguishable from young children with invasive pneumococcal infections

### Clinical features of invasive NTS infections among children < age 2 years in Gambia

- ~ 90% non-focal bacteremia/septicemia
- ~ 10% focal meningitis, septic arthritis, etc.

| Symptom      | Pneumo (N=74) | NTS (N=92) |
|--------------|---------------|------------|
| Very sick    | 88%           | 79%        |
| Diarrhea     | 16%           | 38%        |
| Vomiting     | 58%           | 62%        |
| Resp. sx     | 95%           | 67%        |
| ↑ Resp. rate | 96%           | 77%        |





What non-typhoidal Salmonella (NTS) serovars are causing invasive NTS disease in sub-Saharan Africa?

### Invasive NTS infection serovars among children < age 3 yrs in sub-Saharan Africa – early studies

- Salmonella Typhimurium
- Salmonella Enteritidis

These two serovars account for ~ 75-95% of the cases of invasive pediatric NTS disease in Kenya, Malawi, Gambia, Mozambique & Mali



### Surveillance at l'Hôpital Gabriel Touré (HGT), Mali







### Surveillance at l'Hôpital Gabriel Touré (HGT), Mali

- 71% of pediatric admissions had presumed infections (J Campbell, S Sow, et al 2004)
- 50% had a clinical dx of malaria
- 21% of admissions died in hospital
- Clinical Bacteriology Laboratory established by CVD in 2002
- Malian personnel were trained at CVD in Baltimore and locally in Mali in clinical microbiology, GCP & data management
- Blood cultures or body fluid cultures (e.g., CSF) systematically (7 days/week) obtained from hospital admissions with:

✓ Age: 0-15 years✓ Fever: ≥39°C and/or

CVD

✓Clinical syndrome compatible with invasive bacterial disease (e.g., sepsis, meningitis, septic arthritis, etc.)









### **Serovars of the 566 NTS isolates**



Typhimurium and monophasic variants (I 4,[5],12:i:-) are mostly ST 313.

### **Total NTS and Typhimurium\*/Enteritidis** cases by age groups



\* Includes Typhimurium and monophasic variants

### Total NTS and Typhimurium\*/Enteritidis cases < 60 months of age



### **Total NTS and S. Typhimurium\* & S. Enteritidis cases < 12 months of age**



\* Includes Typhimurium and monophasic variants

6-11 m M Tapia et al 2012

### Clinical presentation of hospitalized NTS cases, 7/02 - 6/12, Mali

|                                                 | Bacteremia/<br>Septicemia | Meningitis |
|-------------------------------------------------|---------------------------|------------|
| Number of cases                                 | 509 (90%)                 | 47* (8.3%) |
| % of cases due to<br>Typhimurium or Enteritidis | 74.7%                     | 83%        |
| Median age                                      | 23 months                 | 11 months  |
| Case Fatality Rate (CFR)                        | 22%                       | 23%**      |

- 1 case also had (+) culture of soft tissue \*\* 7 of 10 deaths were < 12 months of age Remaining cases included 1 septic arthritis, 1 peritonitis & 8 soft tissue infections.
- Total = 566 cases

### Case fatality rate (CFR) by serovar of hospitalized cases of invasive NTS, Mali, 7/02 - 6/12

| Serovar      | Cases | CFR  |
|--------------|-------|------|
| Typhimurium  | 202   | 16%* |
| Enteritidis  | 182   | 28%* |
| I 4,5,12:i:- | 41    | 19%  |
| Dublin       | 68    | 19%  |
| Stanleyville | 20    | 20%  |
| Group C      | 20    | 13%  |
| All others   | 33    | 41%  |
| TOTAL        | 566   | 22%  |



\* p=0.005

M Tapia et al 2012

## Case fatality rate by age among invasive NTS inpatients, Mali, 7/02-6/12

| Age    | Typhim | urium* | Enteritidis |     |
|--------|--------|--------|-------------|-----|
| (mos.) | Cases  | CFR    | Cases       | CFR |
| 0-11   | 52     | 19%    | 44          | 38% |
| 12-23  | 66     | 14%    | 47          | 24% |
| 24-35  | 28     | 22%    | 33          | 31% |
| 36-47  | 25     | 17%    | 15          | 43% |
| 48-59  | 15     | 17%    | 9           | 25% |
| < 60   | 186    | 17%    | 148         | 35% |



\* Includes S. Typhimurium and monophasic variants

M Tapia et al 2012

## Antibiotic resistance of NTS isolates

| Serovar      | Ν   | Amp | Chlor | Ceftr | TMP/ |
|--------------|-----|-----|-------|-------|------|
|              |     |     |       |       | SMZ  |
| Typhimurium  | 191 | 96% | 100%  | 5%    | 94%  |
| Enteritidis  | 70  | 97% | 39%   | 17%   | 61%  |
| Dublin       | 54  | 4%  | 0%    | 2%    | 4%   |
| Stanleyville | 28  | 0%  | 0%    | 0%    | 0%   |

CVD

### **Severe invasive NTS disease in Africa**

### Host risk factors

- Reticuloendothelial system blockade
  - Severe anemia of malaria
  - Hemolytic anemias (e.g., sickle cell hemoglobinopathy, etc.)
- HIV (where prevalent)
- Malnutrition



### Seasonality- NTS cases, Mali, 7/02 – 6/12



### Year-to-year variability of invasive NTS infections & malaria smear positivity (blue), Mali, 7/02 – 6/12



### Year to year variability of serovar composition, Mali, 7/02 – 6/12



\* Includes Typhimurium and monophasic variants

### Are the S. Typhimurium and S. Enteritidis isolates from pediatric invasive NTS patients distinctive?



### **Changing our views about NTS**

- Invasive MDR NTS isolates from Malawi & Kenya are mainly of an unusual MLST type (ST313)
- Malawian strain D23580 sequenced by R Kingsley & G Dougan at the Sanger Institute, UK
- Compared to genome sequences of "classic" Typhimurium strain LT2 & Typhi, D23580 showed:
  - Genome degradation & convergence- Typhi-like
    - 34 pseudogenes not in LT2
    - 17 kb deleted; total coding loss of 61 genes
    - 32 of 61 lost genes are also degraded in Typhi or Paratyphi A

R Kingsley et al 2009





Malian S. **Typhimurium** and monophasic mutants are also ST313 clade & closely resemble the Malawi prototype

S Tennant & R Kingsley

Can we make a safe, effective & affordable vaccine to prevent invasive NTS disease among infants & toddlers in Africa? Lessons learned from successful

typhoid vaccines serve as a guide



## Immune responses likely to mediate protection against NTS & strategies to elicit the responses

### SIgA mucosal ABs

Prevent invasion from gut

### Serum antibodies

Targets for antibodies:
OPS; flagella; core PS, OMP?
Biological activity of ABs:
Opsonophagocytic killing Bactericidal - complementmediated killing

### **Cell-mediated immunity**

Eliminates intracellular bugs

### Best for eliciting gut SIgA

Live oral vaccine

### **Best for serum IgG ABs**

Parenteral conjugate or protein vaccines

### **Best for stimulating CMI**

Live oral vaccines

Clinical development of the bivalent (S. Typhimurium/S. Enteritidis) conjugate NTS vaccine: a public-private partnership

- CVD, University of Maryland, Baltimore
  - Vaccine design, preclinical, process development, clinical trials, project coordination
- Wellcome Trust, London UK
  - -Funding (Strategic Translation Award), advocacy
- Bharat Biotech, Hyderabad, India
  - GMP pilot lots of the 2 monovalent conjugates & the bivalent conjugate; commercial manufacture post-licensure



### **Deploying a vaccine against invasive NTS**

### Target age by disease burden

Children < 36 months of age</li>

Target age population by practicality of vaccine delivery

- Expanded Program on Immunization (EPI)
  - ~ Age 6, 10 and 14 weeks in most of sub-Saharan Africa
  - NTS vaccine must be compatible with other EPI vaccines



EPI Unit in Health Center, Kangaba, Mali

CVD

### Impact of Hib vaccine introduction on invasive Hib disease in infants, Bamako, Mali





| Sub-Saharan Africa               |      |              |  |  |
|----------------------------------|------|--------------|--|--|
| Countries and territories        | U5MR | U5MR<br>rank |  |  |
| Sierra Leone                     | 185  | 1            |  |  |
| Somalia                          | 180  | 2            |  |  |
| Mali                             | 176  | 3            |  |  |
| Chad                             | 169  | 4            |  |  |
| Democratic Republic of the Congo | 168  | 5            |  |  |
| Central African Republic         | 164  | 6            |  |  |
| Guinea-Bissau                    | 161  | 7            |  |  |
| Angola                           | 158  | 8            |  |  |
| Burkina Faso                     | 146  | 9            |  |  |
| Burundi                          | 139  | 10           |  |  |
| Cameroon                         | 127  | 11           |  |  |
| Guinea                           | 126  | 12           |  |  |
| Niger                            | 125  | 13           |  |  |
| Nigeria                          | 124  | 14           |  |  |
| South Sudan                      | 121  | 15           |  |  |

### Cases & deaths from bacterial invasive infections in children < 5 yrs of age in sub-Saharan Africa



Above the water – the cases & deaths that we detect among children seen at hospitals & health centers

Below the water – the cases & deaths among children in the community who do not access health care facilities

### **Invasive NTS disease**

### Industrialized countries

- Invasive disease as a complication of gastroent.
- Severe invasive disease:
  - Infants < age 3 months</li>
  - The elderly
  - Immunocompromised
- Incidence is increasing
- Typhimurium (ST19), Enteritidis, Heidelberg, Dublin, Schwarzengrund
- Animal reservoir

### Sub-Saharan Africa

- Serendipitous discovery
- Children < age 3 years
- Most do not present with gastroenteritis
- High case fatality > 20%
- Novel strains:
  - ST313 (by MLST)
  - genomic degradation
- 75-95% of invasive NTS
  - S. Typhimurium (including variants),
     S. Enteritidis

### **Acknowledgments (partial listing)**

### Field epidemiology & clinical research colleagues Samba Sow, Milagritos Tapia, Karen Kotloff, James Campbell

### Laboratory research colleagues

James Galen, Sharon Tennant, Rafi Simon, Marcelo Sztein, Marcela Pasetti, Souleymane Diallo, Sofie Livio, James Nataro, Haim Levy, Jin Wang, Boubou Tamboura, Andrew Lees, Patrick Murray, Mary Boyd **Collaborators:** 

Gordon Dougan, Robert Kingsley, Sanger Institute, UK Patricia Fields & Matthew Mikoleit, CDC Laura Martin & Calman MacLennan, NVGH



# Thank you for your attention

