Multidrug-Resistant Salmonella enterica in the Democratic Republic of the Congo (DRC)

Octavie Lunguya¹, Veerle Lejon², Sophie Bertrand³, Raymond Vanhoof³, Jan Verhaegen⁴, Anthony M. Smith⁵, <u>Benedikt Ley²</u>, Karen H. Keddy⁵, Jean-Jacques Muyembe-Tamfum¹, Jan Jacobs²

¹National Institute for Biomedical Research, Kinshasa, DR of the Congo, ²Institute of Trop. Med. Antwerpen, Belgium, ³Scientific Institute of Public Health, Brussels, Belgium, ⁴University Hospital Leuven, Leuven, Belgium, ⁵University of the Witwatersrand, Johannesburg, Republic of South Africa

Institute of Tropical Medicine

Burden of disease – Sub Saharan Africa

Salmonella Typhi:

- 77.4 / 100.000 (children + adults) (Buckle 2012)
- Case fatality rate of 1% (Crump2004)

Non-typhi Salmonella (NTS):

- 175-388 / 100.000 (children) (Gordon2012)
- 1800-9000 / 100.000 (non-ART, HIV⁺ adults) (Gordon2012)
- Case fatality rate of 22%-25% (children + adults) (Gordon 2008)

=> No incidence data from Central Africa available

Reported resistance rates – Central Africa

Salmonella Typhi

- Low numbers of MDR, increasing to >50% since mid 90's
- Very low rates of Fluorquinolone resistance
- No resistance to 3rd gen.
 Cephalosporin

(Vlieghe, 2009)

Non-typhi Salmonella

- High numbers of resistance to Ampicillin and Chloramphenicol
- Medium resistance to Cotrimoxazole and Fluorquinolones
- No resistance to 3rd gen.
 Cephalosporins
- Resistance to Cotrimoxazol + Fluorquinolones observed from 1999 onwards

(Vlieghe, 2009)

Trigger for Survey

- In 2004 / 2005 an outbreak of Salmonella Typhi was observed in Kinshasa
- Case fatality rates of >50% were observed (Muyembe-Tamfum, 2008)
- All isolates evaluated (n=11) were MDR but susceptible to:
 - Gentamicin
 - Ciprofloxacin
 - Cefotaxim

=> A project to assess current susceptibility status of *Salmonella* spp. in the DRC was implemented

From **2007 to 2011** a prospective health care facility based passive survey at centers in **7/11 provinces**:

- Inclusion criteria: suspicion of invasive bacteremia
- Standard demographic data was recorded
- Blood for culture was collected
 - Standard laboratory procedures + antisera testing performed at Institut National de Recherche Biomédicale, (Kinshasa, DRC)
 - Re-serotyping + AB susceptibility testing performed at the Institute of Tropical Medicine (Antwerpen, Belgium)
 - PFGE + molec. markers for fluoroquinolone resistance performed at the National Institute of Public Health (Brussels, Belgium)

Methods – Antimicrobial Susceptibility

- Anitibiotic susceptibility testing for ampicilin, cefotaxime, trimethoprim-sulphamethaxole (TMP-SMX) was performed using the Vitek II (bioMérieux)
- MIC for nalidixic acid, ciprofloxacin, chloramphenicol and azithromycin was determined using E-test macromethod (bioMérieux)
- **ESBL** testing was done with double disc diffusion method (CLSIM100S22)

Definitions

- Minimal inhibitory concentrations for nalidixic acid (MIC≥32 mg/l) and chloramphenicol (MIC≥16 mg/l) were determined according to CLSIM100S21
- Azithromycine resistance: MIC>16mg/l (EUCAST v2.0)
- Decreased ciprofloxacine susceptibility (DCS): MIC>0.064mg/l (EUCAST v2.0)
- Multi Drug resistance (MDR): Resistance against first line antibiotics ampicillin, chloramphenicol, cotrimoxazol (TMP-SMX)

Methods – Molecular Analysis

- Pulsed field gel electrophoresis (PFGE) was performed on a subset using *Xbal* as restriction enzyme according to PulseNet protocol
- Screening for chromosomal quinolone resistance determining regions (QRDR): gyrA, gyrB, parC genes (CEQ2000 DNA sequencer, Beckman Coulter)
- Screening for plasmid mediated quinolone resistance genes (qnrA, qnrB, qnrS) (Cavaco, 2009)

A total of **9.634 blood** samples were collected in 7/11 provinces and cultured

- Positivity rate: 989 (10.3%, excluding contaminants)
- Salmonella Typhi: 201 (20.3%)
- NTS: 233 (23.6%)
 - 184 Salmonella Typhimurium (79%)
 - 42 Salmonella Enteritidis (18%)
 - 7 other Salmonella spp. (3%)

Results Survey

Non – typhi Salmonella

Institute of Tropical Medicine

Results – Antimicrobial Resistance (%)

	<i>Salmonella</i> Typhi (n=201)	non-typhi <i>Salmonella</i> (n=233)	<i>Salmonella</i> Typhimurium (n=184)	<i>Salmonella</i> Enteritidis (n=42)
Ampicillin (%)	64.7	88.0	94.0	64.3
Chloramphenicol (%)	41.3	83.7	90.2	61.9
TMP-SMX (%)	57.7	88.0	94.0	64.3
MDR (%)	30.3	80.7	86.9	59.5
DCS (%)	15.4	4.3	4.9	0.0
Nalidixic Acid (%)	15.4	4.3	4.9	0.0
MDR+DCS (%)	7.5	3.9	4.3	0.0
Azithromycin (%)	1.0	3.0	3.3	0.0
Cefotaxime (%)	0.0	2.1	2.2	0.0
MDR+DCS+ESBL (%)	0.5	0.9	0.5	0.0

Mechanisms of DCS

Salmonella Typhi (n=31, all DCS):

- A total of 31 DCS associated point mutations:
 - gyrA: 83Ser > Tyr or Phe (n=22)
 - gyrA: 87Asp > Gly or Tyr or Asn (n=9)

- No qnrA and qnrB genes were detected
- No mutations in *gyrB* and *parC* genes

Mechanisms of DCS

Non-typhi Salmonella (n=10, all DCS):

- gyrA: 87Asp> Tyr (n=8)
- gyrA: 87Asp>Asn (n=2)
 O Also ESBL producers (all type SHV)

- No qnrA, qnrB and qnrS genes were detected
- No mutations in gyrB and parC genes

Pulsed Field Gel Electrophoresis

- *Salmonella* Typhi (n=185): 30 Profiles detected:
 - o 132 (71%) shared one profile
 - Main profile over time and space
 - 41 (31%) were MDR
 - 23 (17%) were DCS
 - 11 (8%) were MDR + DCS
- Salmonella Typhimurium (n=34): 19 Profiles detected:
 7 (21%) shared one profile (T4)
- Salmonella Enteritidis (n=16): 10 Profiles detected:
 0 4 (25%) shared one profile (E5)

Discussion – Salmonella Typhi

MDR and DCS were observed for Salmonella Typhi

- MDR was less frequent as had been reported in previous studies from the region
- DCS was more frequent as had been reported earlier from the region and was associated with point mutations in *gyrA*
- We possibly observed emerging azithromycine resistance

Discussion non-typhi Salmonella

- Very high rates of MDR were observed for NTS
- Resistance to 3rd generation cephalosporins + ESBL in NTS is reported for the first time from the DRC
- MDR rates in *Salmonella* Enteritidis were significantly lower than in *Salmonella* Typhimurium (p<0.01)

Conclusion

- The observed rates of MDR and DCS underline the importance of permanent antibiotic stewardship programs in the DRC.
- The appearance of strains resistant to 3rd generation cephalosporins and azithromycin may be an indicator to spreading resistance against these drugs
- Comprehensive surveillance systems and public health interventions targeting *Salmonella* spp. are urgently needed to reduce the high burden of disease.
- Incidence studies on burden of disease are planned.

Thank you very much!

Institute of Tropical Medicine