B-cell and T-cell epitope identification with stability analysis of AI-2 import ATP-binding cassette LsrA from S. typhi -In silico approach.

AUTHOR

Vijayababu P, Samykannu G, Antonyraj CB, Narayanan S, Basheer Ahamed SI, Perumal P, Piramanayagam S.

ABSTRACT

Typhoid fever is a severe illness in humans, caused by Salmonella typhi, a Gram-negative bacterium. Membrane proteins of S. typhi have strong potential for its use in development of subunit vaccine against typhoid. In current study, peptide-based subunit vaccine constructed from AI-2 import ATP-binding cassette transporter protein (LsrA) against S. typhi. B-cell and T-cell epitopes were identified at fold level with validated 3-D theoretical modelled structure. T-cell epitope from LsrA (LELPGSRPQ) has binds to maximum number (82.93%) of MHC class I and class II alleles. LsrA epitope was docked with HLA-DR4 and contact map were constructed to analyze molecular interaction (docking) studies. Simulation search for the binding site for full flexibility of the peptide from CABS-dock shows the stable interactions. MD simulation analysis reveals that LsrA epitope was binding and interacting firmly with the HLA-DR4. Hence, we are proposing that LsrA epitope would be a prominent epitope vaccine for human specific pathogen of S. typhi, which requires further steps to be elevated as a vaccine drug in near future.

 

Click here to view the article, published in Microbial Pathogenesis.